A325037 Heinz numbers of integer partitions whose product of parts is greater than their sum.
1, 15, 21, 25, 27, 33, 35, 39, 42, 45, 49, 50, 51, 54, 55, 57, 63, 65, 66, 69, 70, 75, 77, 78, 81, 85, 87, 90, 91, 93, 95, 98, 99, 100, 102, 105, 110, 111, 114, 115, 117, 119, 121, 123, 125, 126, 129, 130, 132, 133, 135, 138, 140, 141, 143, 145, 147, 150, 153
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 1: {} 15: {2,3} 21: {2,4} 25: {3,3} 27: {2,2,2} 33: {2,5} 35: {3,4} 39: {2,6} 42: {1,2,4} 45: {2,2,3} 49: {4,4} 50: {1,3,3} 51: {2,7} 54: {1,2,2,2} 55: {3,5} 57: {2,8} 63: {2,2,4} 65: {3,6} 66: {1,2,5} 69: {2,9} 70: {1,3,4} 75: {2,3,3} 77: {4,5} 78: {1,2,6} 81: {2,2,2,2}
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Maple
q:= n-> (l-> mul(i, i=l)>add(i, i=l))(map(i-> numtheory[pi](i[1])$i[2], ifactors(n)[2])): select(q, [$1..200])[]; # Alois P. Heinz, Mar 27 2019
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; Select[Range[100],Times@@primeMS[#]>Plus@@primeMS[#]&]
Comments