cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A348612 Numbers k such that the k-th composition in standard order is not an anti-run, i.e., has adjacent equal parts.

Original entry on oeis.org

3, 7, 10, 11, 14, 15, 19, 21, 23, 26, 27, 28, 29, 30, 31, 35, 36, 39, 42, 43, 46, 47, 51, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 71, 73, 74, 75, 78, 79, 83, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 99, 100, 103, 106, 107, 110, 111, 112, 113, 114, 115, 116
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

First differs from A345168 in lacking 37, corresponding to the composition (3,2,1).
A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (row k of A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again.

Examples

			The terms and corresponding standard compositions begin:
     3: (1,1)          35: (4,1,1)        61: (1,1,1,2,1)
     7: (1,1,1)        36: (3,3)          62: (1,1,1,1,2)
    10: (2,2)          39: (3,1,1,1)      63: (1,1,1,1,1,1)
    11: (2,1,1)        42: (2,2,2)        67: (5,1,1)
    14: (1,1,2)        43: (2,2,1,1)      71: (4,1,1,1)
    15: (1,1,1,1)      46: (2,1,1,2)      73: (3,3,1)
    19: (3,1,1)        47: (2,1,1,1,1)    74: (3,2,2)
    21: (2,2,1)        51: (1,3,1,1)      75: (3,2,1,1)
    23: (2,1,1,1)      53: (1,2,2,1)      78: (3,1,1,2)
    26: (1,2,2)        55: (1,2,1,1,1)    79: (3,1,1,1,1)
    27: (1,2,1,1)      56: (1,1,4)        83: (2,3,1,1)
    28: (1,1,3)        57: (1,1,3,1)      84: (2,2,3)
    29: (1,1,2,1)      58: (1,1,2,2)      85: (2,2,2,1)
    30: (1,1,1,2)      59: (1,1,2,1,1)    86: (2,2,1,2)
    31: (1,1,1,1,1)    60: (1,1,1,3)      87: (2,2,1,1,1)
		

Crossrefs

Constant run compositions are counted by A000005, ranked by A272919.
Counting these compositions by sum and length gives A131044.
These compositions are counted by A261983.
The complement is A333489, counted by A003242.
The non-alternating case is A345168, complement A345167.
A011782 counts compositions, strict A032020.
A238279 counts compositions by sum and number of maximal runs.
A274174 counts compositions with equal parts contiguous.
A336107 counts non-anti-run permutations of prime factors.
A345195 counts non-alternating anti-runs, ranked by A345169.
For compositions in standard order (rows of A066099):
- Length is A000120.
- Sum is A070939
- Maximal runs are counted by A124767.
- Strict compositions are ranked by A233564.
- Maximal anti-runs are counted by A333381.
- Runs-resistance is A333628.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Select[Range[100],MatchQ[stc[#],{_,x_,x_,_}]&]

A348380 Number of factorizations of n without an alternating permutation. Includes all twins (x*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A333487 at a(216) = 4, A333487(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(n) factorizations for n = 96, 144, 192, 384:
  (2*2*2*12)     (12*12)        (3*4*4*4)        (4*4*4*6)
  (2*2*2*2*6)    (2*2*2*18)     (2*2*2*24)       (2*2*2*48)
  (2*2*2*2*2*3)  (2*2*2*2*9)    (2*2*2*2*12)     (2*2*2*2*24)
                 (2*2*2*2*3*3)  (2*2*2*2*2*6)    (2*2*2*2*3*8)
                                (2*2*2*2*3*4)    (2*2*2*2*4*6)
                                (2*2*2*2*2*2*3)  (2*2*2*2*2*12)
                                                 (2*2*2*2*2*2*6)
                                                 (2*2*2*2*2*3*4)
                                                 (2*2*2*2*2*2*2*3)
		

Crossrefs

The inseparable case is A333487, complement A335434, without twins A348381.
Non-twin partitions of this type are counted by A344654, ranked by A344653.
Twins and partitions not of this type are counted by A344740, ranked by A344742.
Partitions of this type are counted by A345165, ranked by A345171.
Partitions not of this type are counted by A345170, ranked by A345172.
The case without twins is A347706.
The complement is counted by A348379, with twins A347050.
Numbers with a factorization of this type are A348609.
An ordered version is A348613, complement A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A325535 counts inseparable partitions, ranked by A335448.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]=={}&]],{n,100}]

Formula

a(2^n) = A345165(n).

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2021

Keywords

Comments

First differs from A348383 at a(216) = 27, A348383(216) = 28.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).

Examples

			The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
  4    12     24     30     36       48       60       64       72
  2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
       3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
       2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
              2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
              2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
                            2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
                            3*3*4    3*4*4    3*4*5             2*6*6
                            2*2*3*3  2*2*12   2*2*15            3*3*8
                                     2*2*3*4  2*3*10            3*4*6
                                              2*2*3*5           2*2*18
                                                                2*3*12
                                                                2*2*3*6
                                                                2*3*3*4
                                                                2*2*2*3*3
The a(270) = 19 factorizations:
  (2*3*5*9)   (5*6*9)   (3*90)   (270)
  (3*3*5*6)   (2*3*45)  (5*54)
  (2*3*3*15)  (2*5*27)  (6*45)
              (2*9*15)  (9*30)
              (3*3*30)  (10*27)
              (3*5*18)  (15*18)
              (3*6*15)  (2*135)
              (3*9*10)
Note that (2*3*3*3*5) is separable but has no alternating permutations.
		

Crossrefs

Partitions not of this type are counted by A344654, ranked by A344653.
Partitions of this type are counted by A344740, ranked by A344742.
The complement is counted by A347706, without twins A348380.
The case without twins is A348379.
Dominates A348383, the separable case.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]

Formula

For n > 1, a(n) = A335434(n) + A010052(n).

A069321 Stirling transform of A001563: a(0) = 1 and a(n) = Sum_{k=1..n} Stirling2(n,k)*k*k! for n >= 1.

Original entry on oeis.org

1, 1, 5, 31, 233, 2071, 21305, 249271, 3270713, 47580151, 760192505, 13234467511, 249383390393, 5057242311031, 109820924003705, 2542685745501751, 62527556173577273, 1627581948113854711, 44708026328035782905, 1292443104462527895991, 39223568601129844839353
Offset: 0

Views

Author

Karol A. Penson, Mar 14 2002

Keywords

Comments

The number of compatible bipartitions of a set of cardinality n for which at least one subset is not underlined. E.g., for n=2 there are 5 such bipartitions: {1 2}, {1}{2}, {2}{1}, {1}{2}, {2}{1}. A005649 is the number of bipartitions of a set of cardinality n. A000670 is the number of bipartitions of a set of cardinality n with none of the subsets underlined. - Kyle Petersen, Mar 31 2005
a(n) is the cardinality of the image set summed over "all surjections". All surjections means: onto functions f:{1, 2, ..., n} -> {1, 2, ..., k} for every k, 1 <= k <= n. a(n) = Sum_{k=1..n} A019538(n, k)*k. - Geoffrey Critzer, Nov 12 2012
From Gus Wiseman, Jan 15 2022: (Start)
For n > 1, also the number of finite sequences of length n + 1 covering an initial interval of positive integers with at least two adjacent equal parts, or non-anti-run patterns, ranked by the intersection of A348612 and A333217. The complement is counted by A005649. For example, the a(3) = 31 patterns, grouped by sum, are:
(1111) (1222) (1122) (1112) (1233) (1223)
(2122) (1221) (1121) (1332) (1322)
(2212) (2112) (1211) (2133) (2213)
(2221) (2211) (2111) (2331) (2231)
(1123) (3312) (3122)
(1132) (3321) (3221)
(2113)
(2311)
(3112)
(3211)
Also the number of ordered set partitions of {1,...,n + 1} with two successive vertices together in some block.
(End)

Crossrefs

The complement is counted by A005649.
A version for permutations of prime indices is A336107.
A version for factorizations is A348616.
Dominated (n > 1) by A350252, complement A345194, compositions A345192.
A000670 = patterns, ranked by A333217.
A001250 = alternating permutations, complement A348615.
A003242 = anti-run compositions, ranked by A333489.
A019536 = necklace patterns.
A226316 = patterns avoiding (1,2,3), weakly A052709, complement A335515.
A261983 = not-anti-run compositions, ranked by A348612.
A333381 = anti-runs of standard compositions.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n, j), j=1..n))
        end:
    a:= n-> `if`(n=0, 2, b(n+1)-b(n))/2:
    seq(a(n), n=0..30);  # Alois P. Heinz, Feb 02 2018
  • Mathematica
    max = 20; t = Sum[n^(n - 1)x^n/n!, {n, 1, max}]; Range[0, max]!CoefficientList[Series[D[1/(1 - y(Exp[x] - 1)), y] /. y -> 1, {x, 0, max}], x] (* Geoffrey Critzer, Nov 12 2012 *)
    Prepend[Table[Sum[StirlingS2[n, k]*k*k!, {k, n}], {n, 18}], 1] (* Michael De Vlieger, Jan 03 2016 *)
    a[n_] := (PolyLog[-n-1, 1/2] - PolyLog[-n, 1/2])/4; a[0] = 1; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Mar 30 2016 *)
    allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];
    Table[Length[Select[Join@@Permutations/@allnorm[n],MemberQ[Differences[#],0]&]],{n,0,8}] (* Gus Wiseman, Jan 15 2022 *)
  • PARI
    {a(n)=polcoeff(1+sum(m=1, n, (2*m-1)!/(m-1)!*x^m/prod(k=1, m, 1+(m+k-1)*x+x*O(x^n))), n)} \\ Paul D. Hanna, Oct 28 2013

Formula

Representation as an infinite series: a(0) = 1 and a(n) = Sum_{k>=2} (k^n*(k-1)/(2^k))/4 for n >= 1. This is a Dobinski-type summation formula.
E.g.f.: (exp(x) - 1)/((2 - exp(x))^2).
a(n) = (1/2)*(A000670(n+1) - A000670(n)).
O.g.f.: 1 + Sum_{n >= 1} (2*n-1)!/(n-1)! * x^n / (Product_{k=1..n} (1 + (n + k - 1)*x)). - Paul D. Hanna, Oct 28 2013
a(n) = (A000629(n+1) - A000629(n))/4. - Benoit Cloitre, Oct 20 2002
a(n) = A232472(n-1)/2. - Vincenzo Librandi, Jan 03 2016
a(n) ~ n! * n / (4 * (log(2))^(n+2)). - Vaclav Kotesovec, Jul 01 2018
a(n > 0) = A000607(n + 1) - A005649(n). - Gus Wiseman, Jan 15 2022

A349797 Number of non-weakly alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 6, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 24 2021

Keywords

Comments

First differs from 2 * A326291 at a(90) = 4, A326291(90) = 3.
The first odd term is a(144) = 7, whose non-weakly alternating permutations are shown in the example below.
We define a sequence to be weakly alternating if it is alternately weakly increasing and weakly decreasing, starting with either. Then a sequence is alternating in the sense of A025047 iff it is a weakly alternating anti-run.
For n > 1, the multiset of prime factors of n is row n of A027746. The prime indices A112798 can also be used.

Examples

			The following are the weakly alternating permutations for selected n.
n = 30    60     72      120     144      180
   ---------------------------------------------
    235   2235   22332   22235   222332   22353
    532   2352   23223   22352   223223   23235
          2532   23322   22532   223322   23325
          3225   32232   23225   232232   23523
          5223           23522   233222   23532
          5322           25223   322223   25323
                         25322   322322   32235
                         32252            32253
                         52232            32352
                         53222            32532
                                          33225
                                          35223
                                          35322
                                          52233
                                          52332
                                          53223
                                          53232
		

Crossrefs

Counting all permutations of prime factors gives A008480.
Compositions not of this type are counted by A349052/A129852/A129853.
Compositions of this type are counted by A349053, ranked by A349057.
The complement is counted by A349056.
Partitions of this type are counted by A349061, complement A349060.
The version counting patterns is A350138, complement A349058.
The version counting ordered factorizations is A350139, complement A349059.
The strong case is counted by A350251, complement A345164.
Positions of nonzero terms are A350353.
A001250 counts alternating permutations, complement A348615.
A025047 = alternating compositions, ranked by A345167, complement A345192.
A056239 adds up prime indices, row sums of A112798, row lengths A001222.
A071321 gives the alternating sum of prime factors, reverse A071322.
A335452 counts anti-run permutations of prime factors, complement A336107.
A345165 counts partitions w/o an alternating permutation, ranked by A345171.
A345170 counts partitions w/ an alternating permutation, ranked by A345172.
A348379 counts factorizations with an alternating permutation.

Programs

  • Mathematica
    whkQ[y_]:=And@@Table[If[EvenQ[m],y[[m]]<=y[[m+1]],y[[m]]>=y[[m+1]]],{m,1,Length[y]-1}];
    Table[Length[Select[Permutations[Flatten[ConstantArray@@@ FactorInteger[n]]], !whkQ[#]&&!whkQ[-#]&]],{n,100}]

Formula

a(n) = A008480(n) - A349056(n).

A348381 Number of inseparable factorizations of n that are not a twin (x*x).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347706 at a(216) = 3, A347706(216) = 4.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is inseparable if it has no permutation that is an anti-run, meaning there are always adjacent equal parts. Alternatively, a multiset is inseparable if its maximal multiplicity is at most one plus the sum of its remaining multiplicities.

Examples

			The a(n) factorizations for n = 96, 192, 384, 576:
  2*2*2*12      3*4*4*4         4*4*4*6           4*4*4*9
  2*2*2*2*6     2*2*2*24        2*2*2*48          2*2*2*72
  2*2*2*2*2*3   2*2*2*2*12      2*2*2*2*24        2*2*2*2*36
                2*2*2*2*2*6     2*2*2*2*3*8       2*2*2*2*4*9
                2*2*2*2*3*4     2*2*2*2*4*6       2*2*2*2*6*6
                2*2*2*2*2*2*3   2*2*2*2*2*12      2*2*2*2*2*18
                                2*2*2*2*2*2*6     2*2*2*2*3*12
                                2*2*2*2*2*3*4     2*2*2*2*2*2*9
                                2*2*2*2*2*2*2*3   2*2*2*2*2*3*6
                                                  2*2*2*2*2*2*3*3
		

Crossrefs

Positions of nonzero terms are A046099.
Partitions not of this type are counted by A325534 - A000035.
Partitions of this type are counted by A325535 - A000035.
Allowing twins gives A333487.
The case without an alternating permutation is A347706, with twins A348380.
The complement is counted by A348383, without twins A335434.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations of sets.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A344654 counts non-twin partitions without an alternating permutation.
A348382 counts non-anti-run compositions that are not a twin.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],!MatchQ[#,{x_,x_}]&&Select[Permutations[#],!MatchQ[#,{_,x_,x_,_}]&]=={}&]],{n,100}]

Formula

a(n > 1) = A333487(n) - A010052(n).
a(2^n) = A325535(n) - 1 for odd n, otherwise A325535(n).

A348383 Number of factorizations of n that are either separable (have an anti-run permutation) or are a twin (x*x).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 30 2021

Keywords

Comments

First differs from A347050 at a(216) = 28, A347050(216) = 27.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A multiset is separable if it has a permutation that is an anti-run, meaning there are no adjacent equal parts. Alternatively, a multiset is separable if its greatest multiplicity is greater than the sum of the remaining multiplicities plus one.

Examples

			The a(216) = 28 factorizations:
  (2*2*2*3*3*3)  (2*2*2*3*9)  (2*2*6*9)   (3*8*9)   (3*72)   (216)
                 (2*2*3*3*6)  (2*3*4*9)   (4*6*9)   (4*54)
                 (2*3*3*3*4)  (2*3*6*6)   (2*2*54)  (6*36)
                              (3*3*4*6)   (2*3*36)  (8*27)
                              (2*2*3*18)  (2*4*27)  (9*24)
                              (2*3*3*12)  (2*6*18)  (12*18)
                                          (2*9*12)  (2*108)
                                          (3*3*24)
                                          (3*4*18)
                                          (3*6*12)
The a(270) = 20 factorizations:
  (2*3*3*3*5)  (2*3*5*9)   (5*6*9)   (3*90)   (270)
               (3*3*5*6)   (2*3*45)  (5*54)
               (2*3*3*15)  (2*5*27)  (6*45)
                           (2*9*15)  (9*30)
                           (3*3*30)  (10*27)
                           (3*5*18)  (15*18)
                           (3*6*15)  (2*135)
                           (3*9*10)
		

Crossrefs

Positions of 1's are 1 and A000040.
Not requiring separability gives A010052 for n > 1.
Positions of 2's are A323644.
Partitions of this type are counted by A325534(n) + A000035(n + 1).
Partitions of this type are ranked by A335433 \/ A001248.
Partitions not of this type are counted by A325535(n) - A000035(n + 1).
Partitions not of this type are ranked by A345193 = A335448 \ A001248.
Not allowing twins gives A335434, complement A333487,
The case with an alternating permutation is A347050, no twins A348379.
The case without an alternating permutation is A347706, no twins A348380.
The complement is counted by A348381.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A003242 counts anti-run compositions, ranked by A333489.
A025047 counts alternating or wiggly compositions.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    sepQ[m_]:=Select[Permutations[m],!MatchQ[#,{_,x_,x_,_}]&]!={};
    Table[Length[Select[facs[n],MatchQ[#,{x_,x_}]||sepQ[#]&]],{n,100}]

Formula

a(n > 1) = A335434(n) + A010052(n), where A010052(n) = 1 if n is a perfect square, otherwise 0.

A348611 Number of ordered factorizations of n with no adjacent equal factors.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 1, 6, 1, 3, 3, 4, 1, 6, 1, 6, 3, 3, 1, 14, 1, 3, 3, 6, 1, 13, 1, 7, 3, 3, 3, 17, 1, 3, 3, 14, 1, 13, 1, 6, 6, 3, 1, 29, 1, 6, 3, 6, 1, 14, 3, 14, 3, 3, 1, 36, 1, 3, 6, 14, 3, 13, 1, 6, 3, 13, 1, 45, 1, 3, 6, 6, 3, 13, 1, 29, 4, 3
Offset: 1

Views

Author

Gus Wiseman, Nov 07 2021

Keywords

Comments

First differs from A348610 at a(24) = 14, A348610(24) = 12.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
In analogy with Carlitz compositions, these may be called Carlitz ordered factorizations.

Examples

			The a(n) ordered factorizations without adjacent equal factors for n = 1, 6, 12, 16, 24, 30, 32, 36 are:
  ()   6     12      16      24      30      32      36
       2*3   2*6     2*8     3*8     5*6     4*8     4*9
       3*2   3*4     8*2     4*6     6*5     8*4     9*4
             4*3     2*4*2   6*4     10*3    16*2    12*3
             6*2             8*3     15*2    2*16    18*2
             2*3*2           12*2    2*15    2*8*2   2*18
                             2*12    3*10    4*2*4   3*12
                             2*3*4   2*3*5           2*3*6
                             2*4*3   2*5*3           2*6*3
                             2*6*2   3*2*5           2*9*2
                             3*2*4   3*5*2           3*2*6
                             3*4*2   5*2*3           3*4*3
                             4*2*3   5*3*2           3*6*2
                             4*3*2                   6*2*3
                                                     6*3*2
                                                     2*3*2*3
                                                     3*2*3*2
Thus, of total A074206(12) = 8 ordered factorizations of 12, only factorizations 2*2*3 and 3*2*2 (see A348616) are not included in this count, therefore a(12) = 6. - _Antti Karttunen_, Nov 12 2021
		

Crossrefs

The additive version (compositions) is A003242, complement A261983.
The additive alternating version is A025047, ranked by A345167.
Factorizations without a permutation of this type are counted by A333487.
As compositions these are ranked by A333489, complement A348612.
Factorizations with a permutation of this type are counted by A335434.
The non-alternating additive version is A345195, ranked by A345169.
The alternating case is A348610, which is dominated at positions A122181.
The complement is counted by A348616.
A001055 counts factorizations, strict A045778, ordered A074206.
A325534 counts separable partitions, ranked by A335433.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A348613 counts non-alternating ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    antirunQ[y_]:=Length[y]==Length[Split[y]]
    Table[Length[Select[ordfacs[n],antirunQ]],{n,100}]
  • PARI
    A348611(n, e=0) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d!=e), s += A348611(n/d, d))); (s)); \\ Antti Karttunen, Nov 12 2021

Formula

a(n) = A074206(n) - A348616(n).

A350251 Number of non-alternating permutations of the multiset of prime factors of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 1, 0, 2, 0, 2, 0, 0, 0, 4, 1, 0, 1, 2, 0, 2, 0, 1, 0, 0, 0, 4, 0, 0, 0, 4, 0, 2, 0, 2, 2, 0, 0, 5, 1, 2, 0, 2, 0, 4, 0, 4, 0, 0, 0, 8, 0, 0, 2, 1, 0, 2, 0, 2, 0, 2, 0, 9, 0, 0, 2, 2, 0, 2, 0, 5, 1, 0, 0, 8, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 08 2022

Keywords

Comments

A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2).

Examples

			The a(n) permutations for selected n:
n = 4    12    24     48      60     72      90     96       120
   ----------------------------------------------------------------
    22   223   2223   22223   2235   22233   2335   222223   22235
         322   2232   22232   2253   22323   2353   222232   22253
               2322   22322   2352   22332   2533   222322   22325
               3222   23222   2532   23223   3235   223222   22352
                      32222   3225   23322   3325   232222   22523
                              3522   32223   3352   322222   22532
                              5223   32232   3532            23225
                              5322   32322   5233            23522
                                     33222   5323            25223
                                             5332            25322
                                                             32225
                                                             32252
                                                             32522
                                                             35222
                                                             52223
                                                             52232
                                                             52322
                                                             53222
		

Crossrefs

The non-anti-run case is A336107, complement A335452.
The complement is counted by A345164, with twins A344606.
Positions of nonzero terms are A345171, counted by A345165.
Positions of zeros are A345172, counted by A345170.
Compositions of this type are counted by A345192, ranked by A345168.
Ordered factorizations of this type counted by A348613, complement A348610.
Compositions weakly of this type are counted by A349053, ranked by A349057.
The weak version is A349797, complement A349056.
The case that is also weakly alternating is A349798, compositions A349800.
Patterns of this type are counted by A350252, complement A345194.
A001250 counts alternating permutations, complement A348615.
A003242 counts Carlitz (anti-run) compositions.
A008480 counts permutations of prime factors (ordered prime factorizations).
A025047/A025048/A025049 count alternating compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798 (row lengths A001222).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344616 gives the alternating sum of prime indices, reverse A316524.
A349052/A129852/A129853 count weakly alternating compositions.

Programs

  • Mathematica
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]] ==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[Permutations[Flatten[ ConstantArray@@@FactorInteger[n]]],!wigQ[#]&]],{n,100}]

Formula

a(n) = A008480(n) - A345164(n).

A348616 Number of ordered factorizations of n with adjacent equal factors.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 6, 1, 0, 1, 2, 0, 0, 0, 9, 0, 0, 0, 9, 0, 0, 0, 6, 0, 0, 0, 2, 2, 0, 0, 19, 1, 2, 0, 2, 0, 6, 0, 6, 0, 0, 0, 8, 0, 0, 2, 18, 0, 0, 0, 2, 0, 0, 0, 31, 0, 0, 2, 2, 0, 0, 0, 19, 4, 0, 0, 8, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 08 2021

Keywords

Comments

First differs from A348613 at a(24) = 6, A348613(24) = 8.
An ordered factorization of n is a finite sequence of positive integers > 1 with product n.

Examples

			The a(n) ordered factorizations with at least one pair of adjacent equal factors for n = 12, 24, 36, 60:
   2*2*3    2*2*6      6*6        15*2*2
   3*2*2    6*2*2      2*2*9      2*2*15
            2*2*2*3    3*3*4      2*2*3*5
            2*2*3*2    4*3*3      2*2*5*3
            2*3*2*2    9*2*2      3*2*2*5
            3*2*2*2    2*2*3*3    3*5*2*2
                       2*3*3*2    5*2*2*3
                       3*2*2*3    5*3*2*2
                       3*3*2*2
See also examples in A348611.
		

Crossrefs

Positions of 0's are A005117.
Positions of 4's appear to be A030514.
Positions of 2's appear to be A054753.
Positions of 1's appear to be A168363.
The additive version (compositions) is A261983, complement A003242.
Factorizations with a permutation of this type are counted by A333487.
Factorizations without a permutation of this type are counted by A335434.
The complement is counted by A348611.
As compositions these are ranked by A348612, complement A333489.
Dominated by A348613 (non-alternating ordered factorizations).
A001055 counts factorizations, strict A045778, ordered A074206.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    antirunQ[y_]:=Length[y]==Length[Split[y]]
    Table[Length[Select[ordfacs[n],!antirunQ[#]&]],{n,100}]

Formula

a(n) = A074206(n) - A348611(n).
Showing 1-10 of 12 results. Next