cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 350 results. Next

A195152 Square array read by antidiagonals with T(n,k) = n*((k+2)*n-k)/2, n=0, +- 1, +- 2,..., k>=0.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 4, 5, 3, 1, 0, 9, 7, 6, 4, 1, 0, 9, 12, 10, 7, 5, 1, 0, 16, 15, 15, 13, 8, 6, 1, 0, 16, 22, 21, 18, 16, 9, 7, 1, 0, 25, 26, 28, 27, 21, 19, 10, 8, 1, 0, 25, 35, 36, 34, 33, 24, 22, 11, 9, 1, 0, 36, 40, 45, 46, 40, 39, 27, 25, 12, 10, 1, 0
Offset: 0

Views

Author

Omar E. Pol, Sep 14 2011

Keywords

Comments

Also, column k lists the partial sums of the column k of A195151. The first differences in row n are always the n-th term of the triangular numbers repeated 0,0,1,1,3,3,6,6,... ([0,0] together with A008805).
Also, for k >= 1, this is a table of generalized polygonal numbers since column k lists the generalized m-gonal numbers, where m = k+4, for example: if k = 1 then m = 5, so the column 1 lists the generalized pentagonal numbers A001318 (see example).

Examples

			Array begins:
.  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
.  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
.  1,   2,   3,   4,   5,   6,   7,   8,   9,  10,...
.  4,   5,   6,   7,   8,   9,  10,  11,  12,  13,...
.  4,   7,  10,  13,  16,  19,  22,  25,  28,  31,...
.  9,  12,  15,  18,  21,  24,  27,  30,  33,  36,...
.  9,  15,  21,  27,  33,  39,  45,  51,  57,  63,...
. 16,  22,  28,  34,  40,  46,  52,  58,  64,  70,...
. 16,  26,  36,  46,  56,  66,  76,  86,  96, 106,...
. 25,  35,  45,  55,  65,  75,  85,  95, 105, 115,...
. 25,  40,  55,  70,  85, 100, 115, 130, 145, 160,...
...
		

Crossrefs

Column 0 gives A008794, except its first term.

Formula

T(n,k) = (k+2)*n*(n+1)/8+(k-2)*((2*n+1)*(-1)^n-1)/16, n >= 0 and k >= 0. - Omar E. Pol, Oct 01 2011

A212208 Triangle T(n,k), n>=1, 0<=k<=n^2, read by rows: row n gives the coefficients of the chromatic polynomial of the square diagonal grid graph DG_(n,n), highest powers first.

Original entry on oeis.org

1, 0, 1, -6, 11, -6, 0, 1, -20, 174, -859, 2627, -5082, 6048, -4023, 1134, 0, 1, -42, 825, -10054, 85011, -528254, 2491825, -9084089, 25795983, -57031153, 97292827, -125639547, 118705077, -77301243, 30931875, -5709042, 0, 1, -72, 2492, -55183, 877812
Offset: 1

Views

Author

Alois P. Heinz, May 04 2012

Keywords

Comments

The square diagonal grid graph DG_(n,n) has n^2 = A000290(n) vertices and 2*(n-1)*(2*n-1) = A002943(n-1) edges. The chromatic polynomial of DG_(n,n) has n^2+1 = A002522(n) coefficients.

Examples

			3 example graphs:                          o---o---o
.                                          |\ /|\ /|
.                                          | X | X |
.                                          |/ \|/ \|
.                             o---o        o---o---o
.                             |\ /|        |\ /|\ /|
.                             | X |        | X | X |
.                             |/ \|        |/ \|/ \|
.                o            o---o        o---o---o
Graph:        DG_(1,1)       DG_(2,2)       DG_(3,3)
Vertices:        1              4              9
Edges:           0              6             20
The square diagonal grid graph DG_(2,2) equals the complete graph K_4 and has chromatic polynomial q*(q-1)*(q-2)*(q-3) = q^4 -6*q^3 +11*q^2 -6*q => row 2 = [1, -6, 11, -6, 0].
Triangle T(n,k) begins:
1,    0;
1,   -6,    11,      -6,        0;
1,  -20,   174,    -859,     2627,      -5082, ...
1,  -42,   825,  -10054,    85011,    -528254, ...
1,  -72,  2492,  -55183,   877812,  -10676360, ...
1, -110,  5895, -205054,  5203946, -102687204, ...
1, -156, 11946, -598491, 22059705, -637802510, ...
		

Crossrefs

Columns 1-2 give: A000012, (-1)*A002943(n-1).
Row sums (for n>1) and last elements of rows give: A000004, row lengths give: A002522.

A229079 Number A(n,k) of ascending runs in {1,...,k}^n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 7, 3, 0, 0, 4, 15, 20, 4, 0, 0, 5, 26, 63, 52, 5, 0, 0, 6, 40, 144, 243, 128, 6, 0, 0, 7, 57, 275, 736, 891, 304, 7, 0, 0, 8, 77, 468, 1750, 3584, 3159, 704, 8, 0, 0, 9, 100, 735, 3564, 10625, 16896, 10935, 1600, 9, 0
Offset: 0

Views

Author

Alois P. Heinz, Sep 14 2013

Keywords

Examples

			A(4,1) = 4: [1,1,1,1].
A(3,2) = 20 = 3+3+2+3+2+2+2+3: [1,1,1], [2,1,1], [1,2,1], [2,2,1], [1,1,2], [2,1,2], [1,2,2], [2,2,2].
A(2,3) = 15 = 2+2+2+1+2+2+1+1+2: [1,1], [2,1], [3,1], [1,2], [2,2], [3,2], [1,3], [2,3], [3,3].
A(1,4) = 4 = 1+1+1+1: [1], [2], [3], [4].
Square array A(n,k) begins:
  0, 0,   0,     0,     0,      0,       0,       0, ...
  0, 1,   2,     3,     4,      5,       6,       7, ...
  0, 2,   7,    15,    26,     40,      57,      77, ...
  0, 3,  20,    63,   144,    275,     468,     735, ...
  0, 4,  52,   243,   736,   1750,    3564,    6517, ...
  0, 5, 128,   891,  3584,  10625,   25920,   55223, ...
  0, 6, 304,  3159, 16896,  62500,  182736,  453789, ...
  0, 7, 704, 10935, 77824, 359375, 1259712, 3647119, ...
		

Crossrefs

Columns k=0-10 give: A000004, A001477, A066373(n+1) for n>0, A229277, A229278, A229279, A229280, A229281, A229282, A229283, A229284.
Main diagonal gives A229078.

Programs

  • Maple
    A:= (n, k)-> `if`(n=0, 0, k^(n-1)*((n+1)*k+n-1)/2):
    seq(seq(A(n,d-n), n=0..d), d=0..12);
  • Mathematica
    a[, 0] = a[0, ] = 0; a[n_, k_] := k^(n-1)*((n+1)*k+n-1)/2; Table[a[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 09 2013 *)

Formula

A(n,k) = k^(n-1)*((n+1)*k+n-1)/2 for n>0, A(0,k) = 0.

A242249 Number A(n,k) of rooted trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 2, 0, 0, 1, 3, 7, 4, 0, 0, 1, 4, 15, 26, 9, 0, 0, 1, 5, 26, 82, 107, 20, 0, 0, 1, 6, 40, 188, 495, 458, 48, 0, 0, 1, 7, 57, 360, 1499, 3144, 2058, 115, 0, 0, 1, 8, 77, 614, 3570, 12628, 20875, 9498, 286, 0, 0, 1, 9, 100, 966, 7284, 37476, 111064, 142773, 44947, 719, 0
Offset: 0

Views

Author

Alois P. Heinz, May 09 2014

Keywords

Comments

From Vaclav Kotesovec, Aug 26 2014: (Start)
Column k > 0 is asymptotic to c(k) * d(k)^n / n^(3/2), where constants c(k) and d(k) are dependent only on k. Conjecture: d(k) ~ k * exp(1). Numerically:
d(1) = 2.9557652856519949747148175... (A051491)
d(2) = 5.6465426162329497128927135... (A245870)
d(3) = 8.3560268792959953682760695...
d(4) = 11.0699628777593263124193026...
d(5) = 13.7856511100846851989303249...
d(6) = 16.5022088446930015657112211...
d(7) = 19.2192613290638657575973462...
d(8) = 21.9366222112987115910888213...
d(9) = 24.6541883249893084812976812...
d(10) = 27.3718979186642404090999595...
d(100) = 272.0126359583480733207362718...
d(101) = 274.7309127032967881125015217...
d(200) = 543.8405620978790523837823296...
d(201) = 546.5588426492458787468860222...
d(101)-d(100) = 2.718276744...
d(201)-d(200) = 2.718280551...
(End)

Examples

			Square array A(n,k) begins:
  0,  0,    0,     0,      0,      0,       0,       0, ...
  1,  1,    1,     1,      1,      1,       1,       1, ...
  0,  1,    2,     3,      4,      5,       6,       7, ...
  0,  2,    7,    15,     26,     40,      57,      77, ...
  0,  4,   26,    82,    188,    360,     614,     966, ...
  0,  9,  107,   495,   1499,   3570,    7284,   13342, ...
  0, 20,  458,  3144,  12628,  37476,   91566,  195384, ...
  0, 48, 2058, 20875, 111064, 410490, 1200705, 2984142, ...
		

Crossrefs

Rows n=0-3 give: A000004, A000012, A001477, A005449.
Lower diagonal gives A242375.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, (add(add(d*
          A(d, k), d=divisors(j))*A(n-j, k)*k, j=1..n-1))/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    nn = 10; t[x_] := Sum[a[n] x^n, {n, 1, nn}]; Transpose[ Table[Flatten[ sol = SolveAlways[ 0 == Series[ t[x] - x Product[1/(1 - x^i)^(n a[i]), {i, 1, nn}], {x, 0, nn}], x]; Flatten[{0, Table[a[n], {n, 1, nn}]}] /. sol], {n, 0, nn}]] // Grid (* Geoffrey Critzer, Nov 11 2014 *)
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[Sum[d*A[d, k], {d, Divisors[j]}] *A[n-j, k]*k, {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 04 2014, translated from Maple *)
  • PARI
    \\ ColGf gives column generating function
    ColGf(N,k) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = k/n * sum(i=1, n, sumdiv(i, d, d*A[d]) * A[n-i+1] ) ); x*Ser(A)}
    Mat(vector(8, k, concat(0, Col(ColGf(7, k-1))))) \\ Andrew Howroyd, May 12 2018

Formula

G.f. for column k: x*Product_{n>=1} 1/(1 - x^n)^(k*A(n,k)). - Geoffrey Critzer, Nov 13 2014

A255517 Number A(n,k) of rooted identity trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 5, 2, 0, 0, 1, 4, 12, 18, 3, 0, 0, 1, 5, 22, 64, 66, 6, 0, 0, 1, 6, 35, 156, 363, 266, 12, 0, 0, 1, 7, 51, 310, 1193, 2214, 1111, 25, 0, 0, 1, 8, 70, 542, 2980, 9748, 14043, 4792, 52, 0, 0, 1, 9, 92, 868, 6273, 30526, 82916, 91857, 21124, 113, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2015

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2015: (Start)
k Limit n->infinity A(n,k)^(1/n)
1 2.517540352632003890795354598463447277335981266803... = A246169
2 5.249032491228170579164952216184309265343086337648... = A246312
3 7.969494030514425004826375511986491746399264355846...
4 10.688492754969652458452048798468242930479212456958...
5 13.407087472537747579787047072702638639945914705837...
6 16.125529360448558670505097146631763969697822205298...
7 18.843901825822305757579605844910623225182677164912...
8 21.562238702430237066018783115405680041128676137631...
9 24.280555694806692616578932533497629224907619468796...
10 26.998860838916733933849490675388336975888308433826...
100 271.64425688361559470587959030374804709717287744789...
Conjecture: For big k the limit asymptotically approaches k*exp(1).
(End)

Examples

			A(3,2) = 5:
  o    o    o    o      o
  |    |    |    |     / \
  1    1    2    2    1   2
  |    |    |    |
  1    2    1    2
Square array A(n,k) begins:
  0,  0,   0,    0,    0,     0,     0, ...
  1,  1,   1,    1,    1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6, ...
  0,  1,   5,   12,   22,    35,    51, ...
  0,  2,  18,   64,  156,   310,   542, ...
  0,  3,  66,  363, 1193,  2980,  6273, ...
  0,  6, 266, 2214, 9748, 30526, 77262, ...
		

Crossrefs

Rows n=0-4 give: A000004, A000012, A001477, A000326, 2*A051662(k-1) for k>0.
Lower diagonal gives A255523.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A258651 A(n,k) = n^(k) = k-th arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 4, 5, 0, 0, 0, 0, 4, 1, 6, 0, 0, 0, 0, 4, 0, 5, 7, 0, 0, 0, 0, 4, 0, 1, 1, 8, 0, 0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 0, 0, 4, 0, 0, 0, 16, 6, 10, 0, 0, 0, 0, 4, 0, 0, 0, 32, 5, 7, 11, 0, 0, 0, 0, 4, 0, 0, 0, 80, 1, 1, 1, 12
Offset: 0

Views

Author

Alois P. Heinz, Jun 06 2015

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  1,  0,  0,  0,  0,   0,   0,   0,    0,    0, ...
  2,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  3,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  4,  4,  4,  4,  4,   4,   4,   4,    4,    4, ...
  5,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  6,  5,  1,  0,  0,   0,   0,   0,    0,    0, ...
  7,  1,  0,  0,  0,   0,   0,   0,    0,    0, ...
  8, 12, 16, 32, 80, 176, 368, 752, 1520, 3424, ...
  9,  6,  5,  1,  0,   0,   0,   0,    0,    0, ...
		

Crossrefs

Rows n=0,1,4,8 give: A000004, A000007, A010709, A129150.
Row 15: A090636, Row 28: A090637, Row 63: A090635, Row 81: A129151, Row 128: A369638, Row 1024: A214800, Row 15625: A129152.
Main diagonal gives A185232.
Antidiagonal sums give A258652.
Cf. also A328383.

Programs

  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    seq(seq(A(n, h-n), n=0..h), h=0..14);
  • Mathematica
    d[n_] := n*Sum[i[[2]]/i[[1]], {i, FactorInteger[n]}]; d[0] = d[1] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    Table[A[n, h-n], {h, 0, 14}, {n, 0, h}] // Flatten (* Jean-François Alcover, Apr 27 2017, translated from Maple *)

Formula

A(n,k) = A003415^k(n).

A295901 Unique sequence satisfying SumXOR_{d divides n} a(d) = n^2 for any n > 0, where SumXOR is the analog of summation under the binary XOR operation.

Original entry on oeis.org

1, 5, 8, 20, 24, 40, 48, 80, 88, 120, 120, 160, 168, 240, 240, 320, 288, 312, 360, 480, 384, 408, 528, 640, 616, 520, 648, 960, 840, 816, 960, 1280, 1072, 1440, 1248, 1248, 1368, 1224, 1360, 1920, 1680, 1920, 1848, 1632, 1872, 2640, 2208, 2560, 2384, 3016
Offset: 1

Views

Author

Rémy Sigrist, Nov 29 2017

Keywords

Comments

This sequence is a variant of A256739; both sequences have nice graphical features.
Replacing "SumXOR" by "Sum" in the name leads to the Jordan function J_2 (A007434).
For any sequence f of nonnegative integers with positive indices:
- let x_f be the unique sequence satisfying SumXOR_{d divides n} x_f(d) = f(n) for any n > 0,
- in particular, x_A000027 = A256739 and x_A000290 = a (this sequence),
- also, x_A178910 = A000027 and x_A055895 = A000079,
- see the links section for a gallery of x_f plots for some classic f functions,
- x_f(1) = f(1),
- x_f(p) = f(1) XOR f(p) for any prime p,
- x_f(n) = SumXOR_{d divides n and n/d is squarefree} f(d) for any n > 0,
- the function x: f -> x_f is a bijection,
- A000004 is the only fixed point of x (i.e. x_f = f if and only if f = A000004),
- for any sequence f, x_{2*f} = 2 * x_f,
- for any sequences g and f, x_{g XOR f} = x_g XOR x_f.
From Antti Karttunen, Dec 29 2017: (Start)
The transform x_f described above could be called "Xor-Moebius transform of f" because of its analogous construction to Möbius transform with A008683 replaced by A008966 and the summation replaced by cumulative XOR.
(End)

Crossrefs

Programs

  • PARI
    a(n{, f=k->k^2}) = my (v=0); fordiv(n,d,if (issquarefree(n/d), v=bitxor(v,f(d)))); return (v)

Formula

a(n) = SumXOR_{d divides n and n/d is squarefree} d^2.

A258850 A(n,k) = k-th pi-based arithmetic derivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 0, 2, 0, 0, 1, 3, 0, 0, 0, 2, 4, 0, 0, 0, 1, 4, 5, 0, 0, 0, 0, 4, 3, 6, 0, 0, 0, 0, 4, 2, 7, 7, 0, 0, 0, 0, 4, 1, 4, 4, 8, 0, 0, 0, 0, 4, 0, 4, 4, 12, 9, 0, 0, 0, 0, 4, 0, 4, 4, 20, 12, 10, 0, 0, 0, 0, 4, 0, 4, 4, 32, 20, 11, 11, 0, 0, 0, 0, 4, 0, 4, 4, 80, 32, 5, 5, 12
Offset: 0

Views

Author

Alois P. Heinz, Jun 12 2015

Keywords

Examples

			Square array A(n,k) begins:
  0,  0,  0,  0,  0,   0,   0,    0,     0,     0, ...
  1,  0,  0,  0,  0,   0,   0,    0,     0,     0, ...
  2,  1,  0,  0,  0,   0,   0,    0,     0,     0, ...
  3,  2,  1,  0,  0,   0,   0,    0,     0,     0, ...
  4,  4,  4,  4,  4,   4,   4,    4,     4,     4, ...
  5,  3,  2,  1,  0,   0,   0,    0,     0,     0, ...
  6,  7,  4,  4,  4,   4,   4,    4,     4,     4, ...
  7,  4,  4,  4,  4,   4,   4,    4,     4,     4, ...
  8, 12, 20, 32, 80, 208, 512, 2304, 12288, 81920, ...
  9, 12, 20, 32, 80, 208, 512, 2304, 12288, 81920, ...
		

Crossrefs

Rows n=0,1,4,8 give: A000004, A000007, A010709, A258848.
Antidiagonal sums give A258847.
Main diagonal gives A258849.

Programs

  • Maple
    with(numtheory):
    d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):
    A:= proc(n, k) option remember; `if`(k=0, n, d(A(n, k-1))) end:
    seq(seq(A(n, h-n), n=0..h), h=0..14);
  • Mathematica
    d[n_] := n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]; d[0] = 0;
    A[n_, k_] := A[n, k] = If[k == 0, n, d[A[n, k-1]]];
    Table[Table[A[n, h-n], {n, 0, h}], {h, 0, 14}] // Flatten (* Jean-François Alcover, Apr 24 2016, adapted from Maple *)

Formula

A(n,k) = A258851^k(n).
A(A259016(n,k),k) = n.
A(A258975(n),n) = 1.

A045896 Denominator of n/((n+1)*(n+2)) = A026741/A045896.

Original entry on oeis.org

1, 6, 6, 20, 15, 42, 28, 72, 45, 110, 66, 156, 91, 210, 120, 272, 153, 342, 190, 420, 231, 506, 276, 600, 325, 702, 378, 812, 435, 930, 496, 1056, 561, 1190, 630, 1332, 703, 1482, 780, 1640, 861, 1806, 946, 1980, 1035, 2162, 1128, 2352, 1225, 2550, 1326, 2756, 1431
Offset: 0

Views

Author

Keywords

Comments

Also period length divided by 2 of pairs (a,b), where a has period 2*n-2 and b has period n.
From Paul Curtz, Apr 17 2014: (Start)
Difference table of A026741/A045896:
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/6, 0, -1/60, -1/60, -1/70, -1/84, ... = 1/6, -A051712/A051713
-1/6, -1/60, 0, 1/420, 1/420, 1/504, ...
3/20, 1/60, 1/420, 0, -1/2520, -1/2520, ...
-2/15, -1/70, -1/420, -1/2520, 0, 1/13860, ...
5/42, 1/84, 1/504, 1/2520, -1/13860, 0, ...
Autosequence of the first kind. The main diagonal is A000004. The first two upper diagonals are equal. Their denominators are A000911. (End)

Crossrefs

Programs

  • Haskell
    import Data.Ratio ((%), denominator)
    a045896 n = denominator $ n % ((n + 1) * (n + 2))
    -- Reinhard Zumkeller, Dec 12 2011
    
  • Maple
    seq((n+1)*(n+2)*(3-(-1)^n)/4, n=0..20); # C. Ronaldo
    with(combinat): seq(lcm(n+1,binomial(n+2,n)), n=0..50); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    Table[LCM[2*n + 2, n + 2]/2, {n, 0, 40}] (* corrected by Amiram Eldar, Sep 14 2022 *)
    Denominator[#[[1]]/(#[[2]]#[[3]])&/@Partition[Range[0,60],3,1]] (* Harvey P. Dale, Aug 15 2013 *)
  • PARI
    Vec((2*x^3+3*x^2+6*x+1)/(1-x^2)^3+O(x^99)) \\ Charles R Greathouse IV, Mar 23 2016

Formula

G.f.: (2*x^3+3*x^2+6*x+1)/(1-x^2)^3.
a(n) = (n+1)*(n+2) if n odd; or (n+1)*(n+2)/2 if n even = (n+1)*(n+2)*(3-(-1)^n)/4. - C. Ronaldo (aga_new_ac(AT)hotmail.com), Dec 16 2004
a(2*n) = A000384(n+1); a(2*n+1) = A026741(n+1). - Reinhard Zumkeller, Dec 12 2011
Sum_{n>=0} 1/a(n) = 1 + log(2). - Amiram Eldar, Sep 11 2022
From Amiram Eldar, Sep 14 2022: (Start)
a(n) = lcm(2*n+2, n+2)/2.
a(n) = A045895(n+2)/2. (End)
E.g.f.: (2 + 8*x + x^2)*cosh(x)/2 + (2 + 2*x + x^2)*sinh(x). - Stefano Spezia, Apr 24 2024

A210485 Number T(n,k) of parts in all partitions of n in which no part occurs more than k times; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 3, 3, 6, 0, 3, 8, 8, 12, 0, 5, 11, 15, 15, 20, 0, 8, 17, 24, 29, 29, 35, 0, 10, 23, 36, 41, 47, 47, 54, 0, 13, 36, 50, 65, 71, 78, 78, 86, 0, 18, 48, 75, 91, 104, 111, 119, 119, 128, 0, 25, 69, 102, 132, 150, 165, 173, 182, 182, 192
Offset: 0

Views

Author

Alois P. Heinz, Jan 23 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains terms with k <= n. T(n,k) = T(n,n) = A006128(n) for k >= n.
For fixed k > 0, T(n,k) ~ 3^(1/4) * log(k+1) * exp(Pi*sqrt(2*k*n/(3*(k+1)))) / (Pi * (8*k*(k+1)*n)^(1/4)). - Vaclav Kotesovec, Oct 18 2018

Examples

			T(6,2) = 17: [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [2,2,1,1].
Triangle T(n,k) begins:
  0;
  0,  1;
  0,  1,  3;
  0,  3,  3,  6;
  0,  3,  8,  8, 12;
  0,  5, 11, 15, 15, 20;
  0,  8, 17, 24, 29, 29, 35;
  0, 10, 23, 36, 41, 47, 47, 54;
  0, 13, 36, 50, 65, 71, 78, 78, 86;
  ...
		

Crossrefs

Main diagonal gives A006128.
T(2n,n) gives A364245.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->[l[1], l[2]+l[1]*j])(b(n-i*j, i-1, k)), j=0..min(n/i, k))))
        end:
    T:= (n, k)-> b(n, n, k)[2]:
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[b[n-i*j, i-1, k] /. l_List :> {l[[1]], l[[2]] + l[[1]]*j}, {j, 0, Min[n/i, k]}]]]; T[n_, k_] := b[n, n, k][[2]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 12}] // Flatten (* Jean-François Alcover, Dec 27 2013, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} A213177(n,i).
Previous Showing 41-50 of 350 results. Next