cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 350 results. Next

A086066 a(n) = Sum_{d in D(n)} 2^d, where D(n) = set of digits of n in decimal representation.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 3, 2, 6, 10, 18, 34, 66, 130, 258, 514, 5, 6, 4, 12, 20, 36, 68, 132, 260, 516, 9, 10, 12, 8, 24, 40, 72, 136, 264, 520, 17, 18, 20, 24, 16, 48, 80, 144, 272, 528, 33, 34, 36, 40, 48, 32, 96, 160, 288, 544, 65, 66, 68, 72, 80
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 08 2003

Keywords

Comments

For bitwise logical operations AND and OR:
a(m) = (a(m) AND a(n)) iff D(m) is a subset of D(n),
(a(m) AND a(n)) = 0 iff D(m) and D(n) are disjoint,
a(m) = (a(m) OR a(n)) iff D(n) is a subset of D(m),
a(m) = a(n) iff D(m) = D(n);
A086067(n) = A007088(a(n)).
From Reinhard Zumkeller, Sep 18 2009: (Start)
a(A052382(n)) mod 2 = 0; a(A011540(n)) mod 2 = 1;
for n > 0: a(A000004(n))=1, a(A000042(n))=2, a(A011557(n))=3, a(A002276(n))=4, a(A111066(n))=6, a(A002277(n))=8, a(A002278(n))=16, a(A002279(n))=32, a(A002280(n))=64, a(A002281(n))=128, a(A002282(n))=256, a(A002283(n))=512;
a(n) <= 1023. (End)

Examples

			n=242, D(242) = {2,4}: a(242) = 2^2 + 2^4 = 20.
		

Programs

  • Maple
    A086066 := proc(n) local d: if(n=0)then return 1: fi: d:=convert(convert(n,base,10),set): return add(2^d[j],j=1..nops(d)): end: seq(A086066(n),n=0..64); # Nathaniel Johnston, May 31 2011

A196199 Count up from -n to n for n = 0, 1, 2, ... .

Original entry on oeis.org

0, -1, 0, 1, -2, -1, 0, 1, 2, -3, -2, -1, 0, 1, 2, 3, -4, -3, -2, -1, 0, 1, 2, 3, 4, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8
Offset: 0

Views

Author

Keywords

Comments

This sequence contains every integer infinitely often, hence all integer sequences are subsequences.
This is a fractal sequence.
Indeed, if all terms (a(n),a(n+1)) such that a(n+1) does NOT equal a(n)+1 (<=> a(n+1) < a(n)) are deleted, the same sequence is recovered again. See A253580 for an "opposite" yet similar "fractal tree" construction. - M. F. Hasler, Jan 04 2015

Examples

			Table starts:
            0,
        -1, 0, 1,
    -2, -1, 0, 1, 2,
-3, -2, -1, 0, 1, 2, 3,
...
The sequence of fractions A196199/A004737 = 0/1, -1/1, 0/2, 1/1, -2/1, -1/2, 0/3, 1/2, 2/1, -3/1, -2/2, -1/3, 0/4, 1/3, 2/2, 3/1, -4/4. -3/2, ... contains every rational number (infinitely often) [Laczkovich]. - _N. J. A. Sloane_, Oct 09 2013
		

References

  • Miklós Laczkovich, Conjecture and Proof, TypoTex, Budapest, 1998. See Chapter 10.

Crossrefs

Cf. absolute values A053615, A002262, A002260, row lengths A005408, row sums A000004, A071797.

Programs

  • Haskell
    a196199 n k = a196199_row n !! k
    a196199_tabf = map a196199_row [0..]
    a196199_row n = [-n..n]
    b196199 = bFile' "A196199" (concat $ take 101 a196199_tabf) 0
    -- Reinhard Zumkeller, Sep 30 2011
    
  • Maple
    seq(seq(j-k-k^2, j=k^2 .. (k+1)^2-1), k = 0 .. 10); # Robert Israel, Jan 05 2015
    # Alternatively, as a table with rows -n<=k<=n (compare A257564):
    r := n -> (n-(n mod 2))/2: T := (n, k) -> r(n+k) - r(n-k):
    seq(print(seq(T(n, k), k=-n..n)), n=0..6); # Peter Luschny, May 28 2015
  • Mathematica
    Table[Range[-n, n], {n, 0, 9}] // Flatten
    (* or *)
    a[n_] := With[{t = Floor[Sqrt[n]]}, n - t (t + 1)];
    Table[a[n], {n, 0, 99}] (* Jean-François Alcover, Jul 13 2018, after Boris Putievskiy *)
  • PARI
    r=[];for(k=0,8,r=concat(r,vector(2*k+1,j,j-k-1)));r
    
  • Python
    from math import isqrt
    def A196199(n): return n-(t:=isqrt(n))*(t+1) # Chai Wah Wu, Aug 04 2022

Formula

a(n) = n - t*t - t - 1, where t = floor(sqrt(n-1)). - Boris Putievskiy, Jan 28 2013
G.f.: x/(x-1)^2 + 1/(x-1)*sum(k >= 1, 2*k*x^(k^2)). The series is related to Jacobi theta functions. - Robert Israel, Jan 05 2015

A320647 Triangle read by rows: T(n,k) is the number of chiral pairs of cycles of length n (1) with a color pattern of exactly k colors or equivalently (2) partitioned into k nonempty subsets.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 0, 0, 0, 1, 12, 17, 4, 0, 0, 0, 2, 44, 84, 51, 9, 0, 0, 0, 7, 137, 388, 339, 125, 15, 0, 0, 0, 12, 408, 1586, 2010, 1054, 258, 24, 0, 0, 0, 31, 1190, 6405, 10900, 7928, 2761, 490, 35, 0, 0, 0, 58, 3416, 24927, 56700, 54383, 25680, 6392, 859, 51, 0, 0, 0, 126, 9730, 96404, 286888, 356594, 218246, 72284, 13472, 1420, 68, 0, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 18 2018

Keywords

Comments

Two color patterns are the same if the colors are permuted. A chiral cycle is different from its reverse.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

Examples

			The triangle begins with T(1,1):
  0;
  0,   0;
  0,   0,    0;
  0,   0,    0,     0;
  0,   0,    0,     0,      0;
  0,   0,    4,     2,      0,      0;
  0,   1,   12,    17,      4,      0,      0;
  0,   2,   44,    84,     51,      9,      0,     0;
  0,   7,  137,   388,    339,    125,     15,     0,     0;
  0,  12,  408,  1586,   2010,   1054,    258,    24,     0,    0;
  0,  31, 1190,  6405,  10900,   7928,   2761,   490,    35,    0,  0;
  0,  58, 3416, 24927,  56700,  54383,  25680,  6392,   859,   51,  0, 0;
  0, 126, 9730, 96404, 286888, 356594, 218246, 72284, 13472, 1420, 68, 0, 0;
  ...
For T(6,3)=4, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, and AABACC-AABBAC.
For T(6,4)=2, the chiral pairs are AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Row sums are A320749.
Cf. A152175 (oriented), A152176 (unoriented), A304972 (achiral).

Programs

  • Mathematica
    Ach[n_, k_] := Ach[n, k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d,Adnk[d,n-1,k-#] &], Boole[n==0 && k==0]]
    Table[DivisorSum[n,EulerPhi[#]Adnk[#,n/#,k]&]/(2n)-Ach[n,k]/2,{n,12},{k,n}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={(R(n) - Ach(n))/2}
    { my(A=T(12)); for(n=1, #A, print(A[n, 1..n])) } \\ Andrew Howroyd, Sep 20 2019

Formula

T(n,k) = (A152175(n,k) - A304972(n,k)) / 2 = A152175(n,k) - A152176(n,k) = A152176(n,k) - A304972(n,k).
T(n,k) = -Ach(n,k)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,k), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).

A322699 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is 1/2 * (-1 + Sum_{j=0..k} binomial(2*k,2*j)*(n+1)^(k-j)*n^j).

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 8, 2, 0, 0, 49, 24, 3, 0, 0, 288, 242, 48, 4, 0, 0, 1681, 2400, 675, 80, 5, 0, 0, 9800, 23762, 9408, 1444, 120, 6, 0, 0, 57121, 235224, 131043, 25920, 2645, 168, 7, 0, 0, 332928, 2328482, 1825200, 465124, 58080, 4374, 224, 8, 0
Offset: 0

Views

Author

Seiichi Manyama, Dec 23 2018

Keywords

Examples

			Square array begins:
   0, 0,   0,    0,      0,       0,        0, ...
   0, 1,   8,   49,    288,    1681,     9800, ...
   0, 2,  24,  242,   2400,   23762,   235224, ...
   0, 3,  48,  675,   9408,  131043,  1825200, ...
   0, 4,  80, 1444,  25920,  465124,  8346320, ...
   0, 5, 120, 2645,  58080, 1275125, 27994680, ...
   0, 6, 168, 4374, 113568, 2948406, 76545000, ...
		

Crossrefs

Columns 0-5 give A000004, A001477, A033996, A322675, A322677, A322745.
Main diagonal gives A322746.
Cf. A173175 (A(n,2*n)), A322790.

Programs

  • Mathematica
    Unprotect[Power]; 0^0 := 1; Protect[Power]; Table[(-1 + Sum[Binomial[2 k, 2 j] (# + 1)^(k - j)*#^j, {j, 0, k}])/2 &[n - k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Jan 01 2019 *)
    nmax = 9; row[n_] := LinearRecurrence[{4n+3, -4n-3, 1}, {0, n, 4n(n+1)}, nmax+1]; T = Array[row, nmax+1, 0]; A[n_, k_] := T[[n+1, k+1]];
    Table[A[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 06 2019 *)
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      (0..n).map{|i| (0..k).inject(-1){|s, j| s + ncr(2 * k, 2 * j) * (i + 1) ** (k - j) * i ** j} / 2}
    end
    def A322699(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A322699(10)

Formula

sqrt(A(n,k)+1) + sqrt(A(n,k)) = (sqrt(n+1) + sqrt(n))^k.
sqrt(A(n,k)+1) - sqrt(A(n,k)) = (sqrt(n+1) - sqrt(n))^k.
A(n,0) = 0, A(n,1) = n and A(n,k) = (4*n+2) * A(n,k-1) - A(n,k-2) + 2*n for k > 1.
A(n,k) = (T_{k}(2*n+1) - 1)/2 where T_{k}(x) is a Chebyshev polynomial of the first kind.
T_1(x) = x. So A(n,1) = (2*n+1-1)/2 = n.

A379625 Triangle read by rows: T(n,k) is the number of free polyominoes with n cells whose difference between length and width is k, n >= 1, k >= 0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 3, 0, 1, 6, 2, 3, 0, 1, 7, 16, 6, 5, 0, 1, 25, 39, 27, 11, 5, 0, 1, 80, 120, 97, 45, 19, 7, 0, 1, 255, 425, 307, 191, 71, 28, 7, 0, 1, 795, 1565, 1077, 706, 347, 115, 40, 9, 0, 1, 2919, 5217, 4170, 2505, 1454, 574, 171, 53, 9, 0, 1, 10378, 18511, 15164, 10069, 5481, 2740, 919, 257, 69, 11, 0, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2025

Keywords

Comments

Here the length is the longer of the two dimensions and the width is the shorter of the two dimensions.

Examples

			Triangle begins:
      1;
      0,     1;
      1,     0,     1;
      1,     3,     0,     1;
      6,     2,     3,     0,    1;
      7,    16,     6,     5,    0,    1;
     25,    39,    27,    11,    5,    0,   1;
     80,   120,    97,    45,   19,    7,   0,   1;
    255,   425,   307,   191,   71,   28,   7,   0,  1;
    795,  1565,  1077,   706,  347,  115,  40,   9,  0,  1;
   2919,  5217,  4170,  2505, 1454,  574, 171,  53,  9,  0,  1;
  10378, 18511, 15164, 10069, 5481, 2740, 919, 257, 69, 11,  0,  1;
  ...
Illustration for n = 5:
The free polyominoes with five cells are also called free pentominoes.
For k = 0 there are six free pentominoes with length 3 and width 3 as shown below, thus the difference between length and width is 3 - 3 = 0, so T(5,0) = 6.
     _ _     _ _ _     _         _           _       _ _
   _|_|_|   |_|_|_|   |_|       |_|_       _|_|_    |_|_|
  |_|_|       |_|     |_|_ _    |_|_|_    |_|_|_|     |_|_
    |_|       |_|     |_|_|_|     |_|_|     |_|       |_|_|
.
For k = 1 there are two free pentominoes with length 3 and width 2 as shown below, thus the difference between length and width is 3 - 2 = 1, so T(5,1) = 2.
   _ _       _ _
  |_|_|     |_|_|
  |_|_|     |_|_
  |_|       |_|_|
.
For k = 2 there are three free pentominoes with length 4 and width 2 as shown below, thus the difference between length and width is 4 - 2 = 2, so T(5,2) = 3.
   _           _        _
  |_|        _|_|     _|_|
  |_|       |_|_|    |_|_|
  |_|_      |_|        |_|
  |_|_|     |_|        |_|
.
For k = 3 there are no free pentominoes whose difference between length and width is 3, so T(5,3) = 0.
For k = 4 there is only one free pentomino with length 5 and width 1 as shown below, thus the difference between length and width is 5 - 1 = 4, so T(5,4) = 1.
   _
  |_|
  |_|
  |_|
  |_|
  |_|
.
Therefore the 5th row of the triangle is [6, 2, 3, 0, 1] and the row sum is A000105(5) = 12.
Note that for n = 6 and k = 1 there are 15 free polyominoes with length 4 and width 3 thus the difference between length and width is 4 - 3 = 1. Also there is a free polyomino with length 3 and width 2 thus the difference between length and width is 3 - 2 = 1, so T(6,1) = 15 + 1 = 16.
.
		

Crossrefs

Row sums give A000105.
Column 1 gives A259088.
Row sums except the column 1 give A259087.
Leading diagonal gives A000012.
Second diagonal gives A000004.

Extensions

Terms a(29) and beyond from Jinyuan Wang, Jan 13 2025

A123588 Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - ChT(n, x^(1/2))^2, where ChT(n, x) is the n-th Chebyshev polynomial of the first kind, evaluated at x (0 <= k <= n).

Original entry on oeis.org

0, 1, -1, 0, 4, -4, 1, -9, 24, -16, 0, 16, -80, 128, -64, 1, -25, 200, -560, 640, -256, 0, 36, -420, 1792, -3456, 3072, -1024, 1, -49, 784, -4704, 13440, -19712, 14336, -4096, 0, 64, -1344, 10752, -42240, 90112, -106496, 65536, -16384, 1, -81, 2160, -22176, 114048, -329472, 559104, -552960, 294912
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 12 2006

Keywords

Examples

			Polynomials:
0,
1 - x^2,
4 x^2 - 4 x^4,
1 - 9 x^2 + 24 x^4 - 16 x^6,
16 x^2 - 80 x^4 + 128 x^6 - 64 x^8,
1 - 25 x^2 + 200 x^4 - 560 x^6 + 640 x^8 - 256 x^10
Triangle starts:
  0;
  1,  -1;
  0,   4,  -4;
  1,  -9,  24,  -16;
  0,  16, -80,  128, -64;
  1, -25, 200, -560, 640, -256;
		

References

  • G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, pp. 199-227.

Crossrefs

Cf. A000004 (row sums vanish), A114619 (alternating row sums).

Programs

  • Maple
    with(orthopoly): for n from 0 to 9 do seq(coeff(expand((1-T(n,sqrt(x))^2)),x,k), k=0..n) od; # yields sequence in triangular form
  • Mathematica
    row[0] = {0}; row[n_] := CoefficientList[1 - ChebyshevT[n, x^(1/2)]^2, x]; Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Jan 29 2016 *)
    T[n_,k_]:=If[k==0,Mod[n,2],(-1)^(n+k-1)*4^(k-1)*(2*Binomial[n+k,2*k]-Binomial[n+k-1,2*k-1])];Flatten[Table[T[n,k],{n,0,9},{k,0,n}]] (* Detlef Meya, Aug 11 2024 *)

Formula

T(n, 0) = (n mod 2); T(n,k) = (-1)^(n + k - 1)*4^(k - 1)*(2*binomial(n + k, 2*k) - binomial(n + k - 1, 2*k - 1)) for k > 0. - Detlef Meya, Aug 11 2024

Extensions

Edited by N. J. A. Sloane, Dec 03 2006

A163747 Expansion of e.g.f. 2*exp(x)*(1-exp(x))/(1+exp(2*x)).

Original entry on oeis.org

0, -1, -1, 2, 5, -16, -61, 272, 1385, -7936, -50521, 353792, 2702765, -22368256, -199360981, 1903757312, 19391512145, -209865342976, -2404879675441, 29088885112832, 370371188237525, -4951498053124096, -69348874393137901
Offset: 0

Views

Author

Roger L. Bagula, Aug 03 2009

Keywords

Comments

The real part of the exponential expansion of 2*((1+i)/(1+i*exp(z))-1) = (-1-i)*z + (-1/2+i/2)*z^2 + (1/3+i/3)*z^3 + (5/24-5i/24)*z^4 + (-2/15-2i/15)*z^5 + ... where i is the imaginary unit.
From Paul Curtz, Mar 12 2013: (Start)
a(n) is an autosequence of the first kind; a(n) and successive differences are:
0, -1, -1, 2, 5, -16, -61;
-1, 0, 3, 3, -21, -45, 333;
1, 3, 0, -24, -24, 378, 780;
2, -3, -24, 0, 402, 402, -11214;
-5, -21, 24, 402, 0, -11616, -11616;
-16, 45, 378, -402, -11616, 0, 514608;
61, 333, -780, -11214, 11616, 514608, 0;
The main diagonal is A000004. The inverse binomial transform is the signed sequence.
The first two upper diagonals are A002832 (median Euler numbers) signed.
Sum of the antidiagonals: 0, -2, 0, 10, 0, ... = 2*A122045(n+1) (End)

Crossrefs

Variant: A163982.
Minus the zeroth column of A323833.

Programs

  • Maple
    A163747 := proc(n) exp(t)*(1-exp(t))/(1+exp(2*t)) ; coeftayl(%,t=0,n) ; 2*%*n! ; end proc: # R. J. Mathar, Sep 11 2011
    seq((euler(n) - 2^n*(2*euler(n,1)+euler(n,3/2)))/2 + 1, n=0..30); # Robert Israel, May 24 2016
    egf := (2 - 2*I)/(exp(-x) + I); ser := series(egf, x, 24):
    seq(n!*Re(coeff(ser, x, n)), n = 0..22); # Peter Luschny, Aug 09 2021
  • Mathematica
    f[t_] = (1 + I)/(1 + I*Exp[t]) - 1;
    Table[Re[2*n!*SeriesCoefficient[Series[f[t], {t, 0, 30}], n]], {n, 0, 30}]
    max = 20; Clear[g]; g[max + 2] = 1; g[k_] := g[k] = 1 - x + (4*k+3)*(k+1)*x^2 /( 1 + (4*k+5)*(k+1)*x^2 / g[k+1]); gf = -x/g[0]; CoefficientList[Series[gf, {x, 0, max}], x] (* Vaclav Kotesovec, Jan 22 2015, after Sergei N. Gladkovskii *)
    Table[(EulerE[n] - 2^n (2 EulerE[n, 1] + EulerE[n, 3/2]))/2 + 1, {n, 0, 20}] (* Benedict W. J. Irwin, May 24 2016 *)

Formula

G.f.: -x/W(0), where W(k) = 1 - x + (4*k+3)*(k+1)*x^2 / (1 + (4*k+5)*(k+1)*x^2 / W(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Jan 22 2015
a(n) ~ n! * (cos(Pi*n/2) - sin(Pi*n/2)) * 2^(n+2) / Pi^(n+1). - Vaclav Kotesovec, Apr 23 2015
a(n) = (A122045(n) - 2^n(2*Euler(n,1) + Euler(n,3/2)))/2 + 1, where Euler(n,x) is the n-th Euler polynomial. - Benedict W. J. Irwin, May 24 2016
a(n) = 2*4^n*(HurwitzZeta(-n, 1/4) - HurwitzZeta(-n, 3/4)) + HurwitzZeta(-n, 1)*(4^(n+1) - 2^(n+1)). - Peter Luschny, Jul 21 2020
a(n) = 2^n*(Euler(n, 1/2) - Euler(n, 1)). - Peter Luschny, Mar 19 2021
a(n) = ((-2)^(n + 1)*(1 - 2^(n + 1))*Bernoulli(n + 1))/(n + 1) + Euler(n). - Peter Luschny, May 06 2021
a(n) = n!*Re([x^n]((2 - 2*i)/(i + exp(-x)))). - Peter Luschny, Aug 09 2021

A259016 A(n,k) = k-th pi-based antiderivative of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 0, 3, 3, 3, 0, 5, 5, 5, 4, 0, 11, 11, 11, 4, 5, 0, 10, 10, 10, 4, 11, 6, 0, 29, 29, 29, 4, 10, 13, 7, 0, 78, 78, 78, 4, 29, 41, 6, 8, 0, 141, 141, 141, 4, 78, 35, 13, 19, 9, 0, 266, 266, 266, 4, 141, 38, 41, 15, 23, 10, 0, 147, 147, 147, 4, 266, 163, 35, 14, 83, 29, 11
Offset: 0

Views

Author

Alois P. Heinz, Jun 16 2015

Keywords

Examples

			A(5,3) = 29 -> 10 -> 11 -> 5.
A(5,4) = 78 -> 127 -> 31 -> 11 -> 5.
Square array A(n,k) begins:
  0,  0,  0,   0,    0,     0,     0,      0,     0,      0, ...
  1,  2,  3,   5,   11,    10,    29,     78,   141,    266, ...
  2,  3,  5,  11,   10,    29,    78,    141,   266,    147, ...
  3,  5, 11,  10,   29,    78,   141,    266,   147,    194, ...
  4,  4,  4,   4,    4,     4,     4,      4,     4,      4, ...
  5, 11, 10,  29,   78,   141,   266,    147,   194,   1181, ...
  6, 13, 41,  35,   38,   163,   138,    253,   346,   1383, ...
  7,  6, 13,  41,   35,    38,   163,    138,   253,    346, ...
  8, 19, 15,  14,   43,   191,   201,    217,  1113,   1239, ...
  9, 23, 83, 431, 3001, 27457, 10626, 112087, 87306, 172810, ...
		

Crossrefs

Columns k=0-3 give: A001477, A258861, A258862, A258995.
Rows n=0,1,4,7,8,9 give: A000004, A258975, A010709, A259168, A259169, A259170.

Programs

  • Maple
    with(numtheory):
    d:= n-> n*add(i[2]*pi(i[1])/i[1], i=ifactors(n)[2]):
    A:= proc() local t, A; t, A:= proc()-1 end, proc()-1 end;
          proc(n, k) local h;
            while A(n, k) = -1 do
              t(k):= t(k)+1; h:= (d@@k)(t(k));
              if A(h, k) = -1 then A(h, k):= t(k) fi
            od; A(n, k)
          end
        end():
    seq(seq(A(n, h-n), n=0..h), h=0..12);
  • Mathematica
    d[n_] := If[n == 0, 0, n*Total[Last[#]*PrimePi[First[#]]/First[#]& /@ FactorInteger[n]]];
    A[n_, k_] := For[m = 0, True, m++, If[Nest[d, m, k] == n, Return[m]]];
    Table[A[n, k-n], {k, 0, 12}, {n, 0, k}] // Flatten (* Jean-François Alcover, Mar 20 2017 *)

Formula

A(n,k) = min { m >= 0 : A258851^k(m) = n }.
A258850(A(n,k),k) = n.
A(n,k) <= A000040^k(n) for n>0.

A320742 Array read by antidiagonals: T(n,k) is the number of chiral pairs of color patterns (set partitions) in a cycle of length n using k or fewer colors (subsets).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 6, 13, 2, 0, 0, 0, 0, 0, 0, 6, 30, 46, 7, 0, 0, 0, 0, 0, 0, 6, 34, 130, 144, 12, 0, 0, 0, 0, 0, 0, 6, 34, 181, 532, 420, 31, 0, 0, 0, 0, 0, 0, 6, 34, 190, 871, 2006, 1221, 58, 0, 0, 0, 0, 0, 0, 6, 34, 190, 996, 4016, 7626, 3474, 126, 0, 0, 0, 0, 0, 0, 6, 34, 190, 1011, 5070, 18526, 28401, 9856, 234, 0
Offset: 1

Views

Author

Robert A. Russell, Oct 21 2018

Keywords

Comments

Two color patterns are equivalent if the colors are permuted.
Adnk[d,n,k] in Mathematica program is coefficient of x^k in A(d,n)(x) in Gilbert and Riordan reference.

Examples

			Array begins with T(1,1):
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    0     0     0      0      0      0      0      0      0      0 ...
0  0    4     6     6      6      6      6      6      6      6      6 ...
0  1   13    30    34     34     34     34     34     34     34     34 ...
0  2   46   130   181    190    190    190    190    190    190    190 ...
0  7  144   532   871    996   1011   1011   1011   1011   1011   1011 ...
0 12  420  2006  4016   5070   5328   5352   5352   5352   5352   5352 ...
0 31 1221  7626 18526  26454  29215  29705  29740  29740  29740  29740 ...
0 58 3474 28401 85101 139484 165164 171556 172415 172466 172466 172466 ...
For T(6,4)=6, the chiral pairs are AAABBC-AAABCC, AABABC-AABCAC, AABACB-AABCAB, AABACC-AABBAC, AABACD-AABCAD and AABCBD-AABCDC.
		

Crossrefs

Partial row sums of A320647.
For increasing k, columns converge to A320749.
Cf. A320747 (oriented), A320748 (unoriented), A305749 (achiral).

Programs

  • Mathematica
    Adnk[d_,n_,k_] := Adnk[d,n,k] = If[n>0 && k>0, Adnk[d,n-1,k]k + DivisorSum[d, Adnk[d,n-1,k-#]&], Boole[n == 0 && k == 0]]
    Ach[n_,k_] := Ach[n,k] = If[n<2, Boole[n==k && n>=0], k Ach[n-2,k] + Ach[n-2,k-1] + Ach[n-2,k-2]] (* A304972 *)
    Table[Sum[(DivisorSum[n, EulerPhi[#] Adnk[#,n/#,j]&]/n - Ach[n,j])/2, {j,k-n+1}], {k,15}, {n,k}] // Flatten
  • PARI
    \\ Ach is A304972 and R is A152175 as square matrices.
    Ach(n)={my(M=matrix(n, n, i, k, i>=k)); for(i=3, n, for(k=2, n, M[i, k]=k*M[i-2, k] + M[i-2, k-1] + if(k>2, M[i-2, k-2]))); M}
    R(n)={Mat(Col([Vecrev(p/y, n) | p<-Vec(intformal(sum(m=1, n, eulerphi(m) * subst(serlaplace(-1 + exp(sumdiv(m, d, y^d*(exp(d*x + O(x*x^(n\m)))-1)/d))), x, x^m))/x))]))}
    T(n)={my(M=(R(n) - Ach(n))/2); for(i=2, n, M[,i] += M[,i-1]); M}
    { my(A=T(12)); for(n=1, #A, print(A[n, ])) } \\ Andrew Howroyd, Nov 03 2019

Formula

T(n,k) = Sum_{j=1..k} -Ach(n,j)/2 + (1/2n)*Sum_{d|n} phi(d)*A(d,n/d,j), where Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k)+Ach(n-2,k-1)+Ach(n-2,k-2)) and A(d,n,k) = [n==0 & k==0] + [n>0 & k>0]*(k*A(d,n-1,k) + Sum_{j|d} A(d,n-1,k-j)).
T(n,k) = (A320747(n,k) - A305749(n,k)) / 2 = A320747(n,k) - A320748(n,k)= A320748(n,k) - A305749(n,k).

A337885 Array read by descending antidiagonals: T(n,k) is the number of chiral pairs of colorings of the triangular faces of a regular n-dimensional simplex using k or fewer colors.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 1, 405, 1368, 0, 0, 5, 7904, 4775706, 6711288, 0, 0, 15, 76880, 1522540416, 9923557498416, 1785683627824, 0, 0, 35, 486522, 132342705750, 234239763858347776, 12979826761630383196344, 53302696800142157920, 0
Offset: 2

Views

Author

Robert A. Russell, Sep 28 2020

Keywords

Comments

Each member of a chiral pair is a reflection, but not a rotation, of the other. An n-simplex has n+1 vertices. For n=2, the figure is a triangle with one triangular face. For n=3, the figure is a tetrahedron with 4 triangular faces. For higher n, the number of triangular faces is C(n+1,3).
Also the number of chiral pairs of colorings of the peaks of a regular n-dimensional simplex. A peak of an n-simplex is an (n-3)-dimensional simplex.

Examples

			Table begins with T(2,1):
 0    0       0          0            0             0               0 ...
 0    0       0          1            5            15              35 ...
 0    6     405       7904        76880        486522         2300305 ...
 0 1368 4775706 1522540416 132342705750 5076500214744 110809322249220 ...
For T(3,4)=1, the chiral pair is ABCD-ABDC.
		

Crossrefs

Cf. A337883 (oriented), A337884 (unoriented), A337886 (achiral), A051168 (binary Lyndon words).
Other elements: A325000(n,k-n) (vertices), A327085 (edges).
Other polytopes: A337889 (orthotope), A337893 (orthoplex).
Rows 2-4 are A000004, A000332, A331352.

Programs

  • Mathematica
    m=2; (* dimension of color element, here a triangular face *)
    lw[n_,k_]:=lw[n, k]=DivisorSum[GCD[n,k],MoebiusMu[#]Binomial[n/#,k/#]&]/n (*A051168*)
    cxx[{a_, b_},{c_, d_}]:={LCM[a, c], GCD[a, c] b d}
    compress[x:{{, } ...}] := (s=Sort[x];For[i=Length[s],i>1,i-=1,If[s[[i,1]]==s[[i-1,1]], s[[i-1,2]]+=s[[i,2]]; s=Delete[s,i], Null]]; s)
    combine[a : {{, } ...}, b : {{, } ...}] := Outer[cxx, a, b, 1]
    CX[p_List, 0] := {{1, 1}} (* cycle index for partition p, m vertices *)
    CX[{n_Integer}, m_] := If[2m>n, CX[{n}, n-m], CX[{n},m] = Table[{n/k, lw[n/k, m/k]}, {k, Reverse[Divisors[GCD[n, m]]]}]]
    CX[p_List, m_Integer] := CX[p, m] = Module[{v = Total[p], q, r}, If[2 m > v, CX[p, v - m], q = Drop[p, -1]; r = Last[p]; compress[Flatten[Join[{{CX[q, m]}}, Table[combine[CX[q, m - j], CX[{r}, j]], {j, Min[m, r]}]], 2]]]]
    pc[p_] := Module[{ci, mb}, mb = DeleteDuplicates[p]; ci = Count[p, #] &/@ mb; Total[p]!/(Times @@ (ci!) Times @@ (mb^ci))] (* partition count *)
    row[n_Integer] := row[n] = Factor[Total[If[EvenQ[Total[1-Mod[#, 2]]],1,-1] pc[#] j^Total[CX[#, m+1]][[2]] & /@ IntegerPartitions[n+1]]/(n+1)!]
    array[n_, k_] := row[n] /. j -> k
    Table[array[n,d+m-n], {d,8}, {n,m,d+m-1}] // Flatten

Formula

The algorithm used in the Mathematica program below assigns each permutation of the vertices to a partition of n+1. It then determines the number of permutations for each partition and the cycle index for each partition using a formula for binary Lyndon words. If the value of m is increased, one can enumerate colorings of higher-dimensional elements beginning with T(m,1).
T(n,k) = A337883(n,k) - A337884(n,k) = (A337883(n,k) - A337886(n,k)) / 2 = A337884(n,k) - A337886(n,k).
Previous Showing 91-100 of 350 results. Next