cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 4244 results. Next

A203966 Numbers n such that phi(n) divides n+1, where phi is Euler's totient function (A000010).

Original entry on oeis.org

1, 2, 3, 15, 255, 65535, 83623935, 4294967295, 6992962672132095
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A060473(k) = 1. - Robert G. Wilson v, Jul 06 2014
Except for a(2), all terms are odd. - Chai Wah Wu, Jun 06 2017
Since gcd(phi(n),n) = 1, all terms are squarefree. Then, for n = p1 * ... * pk with primes p1 < ... < pk, (n+1)/phi(n) is very close to p1/(p1-1)*...*pk/(p1-1). Since p/(p-1) is decreasing as p grows, having (n+1)/phi(n) = 3 implies that p1 >= 5 and further that n >= 2.4*10^56 is a product of at least 33 primes. Similarly, having (n+1)/phi(n) >= 4 implies that n >= 1.6*10^30 is a product of at least 21 primes. Hence, the terms of this sequence below 1.6*10^30 have (n+1)/phi(n) = 2 and thus coincide with A050474. - Max Alekseyev, Jan 30 2022

Examples

			15 is in the sequence because phi(15) = 8, and 8 divides 16 = 15 + 1 evenly.
		

Crossrefs

Superset of A050474.

Programs

  • Mathematica
    Select[Range[100000], Divisible[#+1, EulerPhi[#]]&]

Extensions

a(8) from Donovan Johnson, Jan 13 2012
a(9) confirmed by Max Alekseyev, Jan 30 2022

A286160 Compound filter: a(n) = T(A000010(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 2, 5, 12, 14, 23, 27, 59, 42, 40, 65, 109, 90, 61, 86, 261, 152, 142, 189, 179, 148, 115, 275, 473, 273, 148, 318, 265, 434, 674, 495, 1097, 320, 226, 430, 1093, 702, 271, 430, 757, 860, 832, 945, 485, 619, 373, 1127, 1969, 1032, 485, 698, 619, 1430, 838, 1030, 1105, 856, 556, 1769, 2791, 1890, 625, 1117, 4497, 1426, 1196, 2277, 935, 1220
Offset: 1

Views

Author

Antti Karttunen, May 04 2017

Keywords

Crossrefs

Cf. for example A061468 (one of the sequences this matches with).

Programs

  • PARI
    A000010(n) = eulerphi(n);
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ This function from Charles R Greathouse IV, Aug 17 2011
    A286160(n) = (2 + ((A000010(n)+A046523(n))^2) - A000010(n) - 3*A046523(n))/2;
    for(n=1, 10000, write("b286160.txt", n, " ", A286160(n)));
    
  • Python
    from sympy import factorint, totient
    def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2
    def P(n):
        f = factorint(n)
        return sorted([f[i] for i in f])
    def a046523(n):
        x=1
        while True:
            if P(n) == P(x): return x
            else: x+=1
    def a(n): return T(totient(n), a046523(n)) # Indranil Ghosh, May 06 2017
  • Scheme
    (define (A286160 n) (* (/ 1 2) (+ (expt (+ (A000010 n) (A046523 n)) 2) (- (A000010 n)) (- (* 3 (A046523 n))) 2)))
    

Formula

a(n) = (1/2)*(2 + ((A000010(n)+A046523(n))^2) - A000010(n) - 3*A046523(n)).

A233544 Number of ways to write n = k^2 + m with k > 0 and m >= k^2 such that sigma(k^2) + phi(m) is prime, where sigma(k^2) is the sum of all (positive) divisors of k^2, and phi(.) is Euler's totient function (A000010).

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 1, 3, 2, 2, 2, 2, 2, 1, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 4, 3, 2, 3, 2, 3, 4, 2, 1, 3, 3, 3, 4, 2, 2, 2, 3, 1, 5, 4, 2, 4, 2, 4, 3, 2, 4, 4, 2, 3, 3, 2, 1, 4, 2, 3, 6, 2, 5, 3, 5, 3, 4, 3, 3, 4, 4, 2, 2, 5, 2, 3, 5, 3, 4, 2, 2, 4, 3, 3, 5, 6, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 12 2013

Keywords

Comments

Conjectures:
(i) a(n) > 0 for all n > 1.
(ii) Any integer n > 1 can be written as k + m with k > 0 and m > 0 such that sigma(k)^2 + phi(m) (or sigma(k) + phi(m)^2) is prime.
Part (i) of the conjecture is stronger than the conjecture in A232270. We have verified it for n up to 10^8.
I verified the conjecture to 3*10^9. The conjecture is almost surely true. - Charles R Greathouse IV, Dec 13 2013
There are no counterexamples to conjecture (i) < 5.12 * 10^10. - Jud McCranie, Jul 23 2017
The conjectures appeared as Conjecture 3.31 in the linked 2017 paper. - Zhi-Wei Sun, Nov 30 2018

Examples

			a(10) = 1 since 10 = 1^2 + 9 with sigma(1^2) + phi(9) = 1 + 6 = 7 prime.
a(25) = 1 since 25 = 2^2 + 21 with sigma(2^2) + phi(21) = 7 + 12 = 19 prime.
a(34) = 1 since 34 = 4^2 + 18 with sigma(4^2) + phi(18) = 31 + 6 = 37 prime.
a(46) = 1 since 46 = 2^2 + 42 with sigma(2^2) + phi(42) = 7 + 12 = 19 prime.
a(106) = 1 since 106 = 3^2 + 97 with sigma(3^2) + phi(97) = 13 + 96 = 109 prime.
a(163) = 1 since 163 = 3^2 + 154 with sigma(3^2) + phi(154) = 13 + 60 = 73 prime.
a(265) = 1 since 265 = 11^2 + 144 with sigma(11^2) + phi(144) = 133 + 48 = 181 prime.
a(1789) = 1 since 1789 = 1^2 + 1788 with sigma(1^2) + phi(1788) = 1 + 592 = 593 prime.
a(1157) = 3, since 1157 = 10^2 + 1057 with sigma(10^2) + phi(1057) = 217 + 900 = 1117 prime, 1157 = 21^2 + 716 with sigma(21^2) + phi(716) = 741 + 356 = 1097 prime, and 1157 = 24^2 + 581 with sigma(24^2) + phi(581) = 1651 + 492 = 2143 prime. In this example, none of 10, 21 and 24 is a prime power.
		

Crossrefs

Programs

  • Mathematica
    sigma[n_]:=Sum[If[Mod[n,d]==0,d,0],{d,1,n}]
    a[n_]:=Sum[If[PrimeQ[sigma[k^2]+EulerPhi[n-k^2]],1,0],{k,1,Sqrt[n/2]}]
    Table[a[n],{n,1,100}]
  • PARI
    a(n)=sum(k=1,sqrtint(n\2),isprime(sigma(k^2)+eulerphi(n-k^2))) \\ Charles R Greathouse IV, Dec 12 2013

A295501 a(n) = phi(4^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 36, 128, 600, 1728, 10584, 32768, 139968, 480000, 2640704, 6635520, 44717400, 132765696, 534600000, 2147483648, 11452896600, 26121388032, 183250539864, 473702400000, 2427720325632, 8834232287232, 45914084232320, 109586090557440, 656100000000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), this sequence (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[4^Range[30] - 1] (* Paolo Xausa, Jun 17 2024 *)
  • PARI
    {a(n) = eulerphi(4^n-1)}

Formula

a(n) = n*A027695(n).
a(n) = A053287(2*n) = A053285(n) * A053287(n). - Max Alekseyev, Jan 07 2024

A326835 Numbers whose divisors have distinct values of the Euler totient function (A000010).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 1

Views

Author

Amiram Eldar, Oct 28 2019

Keywords

Comments

Since Sum_{d|k} phi(d) = k, these are numbers k such that the set {phi(d) | d|k} is a partition of k into distinct parts.
Includes all the odd prime numbers, since an odd prime p has 2 divisors, 1 and p, whose phi values are 1 and p-1.
If k is a term, then all the divisors of k are also terms. If k is not a term, then all its multiples are not terms. The primitive terms of the complementary sequence are 2, 63, 273, 513, 585, 825, 2107, 2109, 2255, 3069, ....
In particular, all the terms are odd since 2 is not a term (phi(1) = phi(2)).
The number of terms below 10^k for k = 1, 2, ... are 5, 49, 488, 4860, 48598, 485807, 4857394, 48572251, 485716764, 4857144075, ...
Apparently the sequence has an asymptotic density of 0.4857...

Examples

			3 is a term since it has 2 divisors, 1 and 3, and phi(1) = 1 != phi(3) = 2.
15 is a term since the phi values of its divisors, {1, 3, 5, 15}, are distinct: {1, 2, 4, 8}.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local D;
      D:=numtheory:-divisors(n);
      nops(D) = nops(map(numtheory:-phi,D))
    end proc:
    select(filter, [seq(i,i=1..200,2)]); # Robert Israel, Oct 29 2019
  • Mathematica
    aQ[n_] := Length @ Union[EulerPhi /@ (d = Divisors[n])] == Length[d];  Select[Range[130], aQ]
  • PARI
    isok(k) = #Set(apply(x->eulerphi(x), divisors(k))) == numdiv(k); \\ Michel Marcus, Oct 28 2019

Formula

Numbers k such that A319696(k) = A000005(k).
Numbers k such that A319695(k) = A032741(k).
Numbers k such that the k-th row of A102190 has distinct terms.

A033631 Numbers k such that sigma(phi(k)) = sigma(k) where sigma is the sum of divisors function A000203 and phi is the Euler totient function A000010.

Original entry on oeis.org

1, 87, 362, 1257, 1798, 5002, 9374, 21982, 22436, 25978, 35306, 38372, 41559, 50398, 51706, 53098, 53314, 56679, 65307, 68037, 89067, 108946, 116619, 124677, 131882, 136551, 136762, 138975, 144014, 160629, 165554, 170037, 186231, 192394, 197806
Offset: 1

Views

Author

Keywords

Comments

For corresponding values of phi(k) and sigma(k), see A115619 and A115620.
This sequence is infinite because for each positive integer k, 3^k*7*1979 and 3^k*7*2699 are in the sequence (the proof is easy). A108510 gives primes p like 1979 and 2699 such that for each positive integer k, 3^k*7*p is in this sequence. - Farideh Firoozbakht, Jun 07 2005
There is another class of [conjecturally] infinite subsets connected to A005385 (safe primes). Examples: Let s,t be safe primes, s<>t, then 3^2*5*251*s, 2^2*61*71*s, 2*61*s*t and 2*19*311*s are in this sequence. So is 3*s*A108510(m). (There are some obvious exceptions for small s, t.) - Vim Wenders, Dec 27 2006

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 87, p. 29, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books 1997.
  • David Wells, Curious and Interesting Numbers (Revised), Penguin Books, page 114.

Crossrefs

Programs

  • Magma
    [k:k in [1..200000]| DivisorSigma(1,EulerPhi(k)) eq DivisorSigma(1,k)]; // Marius A. Burtea, Feb 09 2020
  • Mathematica
    Do[If[DivisorSigma[1, EulerPhi[n]]==DivisorSigma[1, n], Print[n]], {n, 1, 10^5}]
  • PARI
    is(n)=sigma(eulerphi(n))==sigma(n) \\ Charles R Greathouse IV, Feb 13 2013
    

Extensions

Entry revised by N. J. A. Sloane, Apr 10 2006

A037171 Numbers n such that phi(n) = pi(n), i.e., A000010(n) = A000720(n).

Original entry on oeis.org

2, 3, 4, 8, 10, 14, 20, 90
Offset: 1

Views

Author

Keywords

Comments

David W. Wilson and Jeffrey Shallit showed that 90 is the last term.
Leo Moser proved in 1951 that these are the only terms, but he missed the term 10. - Amiram Eldar, May 15 2017
phi(n) >= pi(n) for n >= 61, and phi(n) > pi(n) for n > 90. - Jonathan Sondow, Dec 02 2017

Examples

			phi(10)=4, pi(10)=4.
a(1)=2 since k=2 is the lowest index for which A000720(n) = A000010(n), i.e., EulerPhi(n) = PrimePi(n). - _M. F. Hasler_, Mar 30 2007
		

References

  • P. Birch and D. Singmaster, An elementary number theory result, Math. Soc. Newsl., 12 (1984), 10-13.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, p. 11.

Crossrefs

Programs

  • Maple
    select(x->numtheory[phi](x)=numtheory[pi](x),[$1..999]); # M. F. Hasler, Mar 30 2007
  • PARI
    for(n=1,1e5,if(primepi(n)==eulerphi(n),print(n))) /* M. F. Hasler, Mar 30 2007 */

Formula

A037228(a(n)) = 0. - Jonathan Sondow, Dec 02 2017

A049690 a(n) = Sum_{k=1..n} phi(2*k), where phi = Euler totient function, cf. A000010.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 17, 23, 31, 37, 45, 55, 63, 75, 87, 95, 111, 127, 139, 157, 173, 185, 205, 227, 243, 263, 287, 305, 329, 357, 373, 403, 435, 455, 487, 511, 535, 571, 607, 631, 663, 703, 727, 769, 809, 833, 877, 923, 955, 997, 1037, 1069, 1117, 1169, 1205
Offset: 0

Views

Author

Keywords

Crossrefs

a(n)=b(2n), where b=A049689. Bisections: A099958, A190815.
Cf. A062570.

Programs

Formula

a(n) ~ 4*n^2/Pi^2. - Vaclav Kotesovec, Aug 20 2021
a(n) = A002088(n) + a(floor(n/2)). - Chai Wah Wu, Aug 04 2024

Extensions

More terms from Vladeta Jovovic, May 18 2001

A366623 a(n) = phi(6^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 24, 168, 864, 6200, 30240, 223944, 1119744, 7457184, 37200000, 277618528, 1254113280, 10445497920, 51618196224, 365601600000, 1770091315200, 13439285266176, 62336092492800, 484935499902880, 2179146240000000, 17141125020596640, 86330728271779200
Offset: 1

Views

Author

Sean A. Irvine, Oct 14 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), this sequence (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[6^Range[22] - 1] (* Paul F. Marrero Romero, Oct 23 2023 *)
  • PARI
    {a(n) = eulerphi(6^n-1)}

Formula

a(n) = A000010(A024062(n)). - Paul F. Marrero Romero, Oct 23 2023

A366685 a(n) = phi(11^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 432, 3840, 64400, 373248, 7613424, 56217600, 765889344, 6913984000, 114117380608, 599824465920, 13796450740800, 98909341090560, 1356399209088000, 11341872916070400, 202178811399717504, 1171410130065973248, 24463636179365818512, 176391086415667200000
Offset: 1

Views

Author

Sean A. Irvine, Oct 16 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), this sequence (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[11^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(11^n-1)}
Previous Showing 21-30 of 4244 results. Next