cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 4244 results. Next

A070812 a(n) = phi(gpf(n)) - gpf(phi(n)) = A000010(A006530(n)) - A006530(A000010(n)).

Original entry on oeis.org

0, -1, 2, 0, 3, -1, -1, 2, 5, 0, 9, 3, 2, -1, 14, -1, 15, 2, 3, 5, 11, 0, -1, 9, -1, 3, 21, 2, 25, -1, 5, 14, 3, -1, 33, 15, 9, 2, 35, 3, 35, 5, 1, 11, 23, 0, -1, -1, 14, 9, 39, -1, 5, 3, 15, 21, 29, 2, 55, 25, 3, -1, 9, 5, 55, 14, 11, 3, 63, -1, 69, 33, -1, 15, 5, 9, 65, 2, -1, 35, 41, 3, 14, 35, 21, 5, 77, 1, 9, 11, 25, 23, 15, 0, 93, -1, 5
Offset: 3

Views

Author

Labos Elemer, May 09 2002

Keywords

Comments

Value of commutator[A000010, A006530] at n.

Examples

			Cases of n when a(n) = 1, -1, 2 or 0 are listed in A070002, A070003, A070004, A007283 respectively. Further regular solutions: if a(n)=3, then n=7k, where k has prime divisors < 7; if a(n)=5, then n=11k, where k has no prime divisors >=11; if a(n)=25, then mostly (not always!) n=31k ...
		

Crossrefs

Programs

  • Mathematica
    pf[x_] := Part[Reverse[Flatten[FactorInteger[x]]], 2] Table[EulerPhi[pf[u]]-pf[EulerPhi[u]], {u, 3, 128}]
  • PARI
    gpf(n)=my(f=factor(n)[,1]);f[#f]
    a(n)=gpf(n)-gpf(eulerphi(n))-1 \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) = A070777(n) - A068211(n).

A083533 First difference sequence of A002202. Difference between consecutive possible values of phi(n), the Euler totient function A000010.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 2, 2, 4, 2, 4, 2, 6, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 4, 4, 6, 2, 2, 2, 4, 2, 2, 4, 4, 2, 6, 4, 2, 2, 2, 2, 4, 4, 2, 2, 4, 6, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 6, 2, 10, 2, 4, 4, 2, 2, 4, 2, 2, 4, 4, 2, 6, 4, 2, 2, 4, 6, 4, 2, 4
Offset: 1

Views

Author

Labos Elemer, May 20 2003

Keywords

Crossrefs

Programs

  • Haskell
    a083533 n = a083533_list !! (n-1)
    a083533_list = zipWith (-) (tail a002202_list) a002202_list
    -- Reinhard Zumkeller, Nov 26 2015
    
  • Mathematica
    t=Table[EulerPhi[w], {w, 1, 25000}]; u=Union[%]; Delete[u-RotateRight[u], 1]
  • PARI
    lista(lim) = {my(k1 = 1, k2 = 1); while(k1 < lim, until(istotient(k2), k2++); print1(k2 - k1, ", "); k1 = k2);} \\ Amiram Eldar, Nov 16 2024

Formula

a(n) = A002202(n+1) - A002202(n).

A097942 Highly totient numbers: each number k on this list has more solutions to the equation phi(x) = k than any preceding k (where phi is Euler's totient function, A000010).

Original entry on oeis.org

1, 2, 4, 8, 12, 24, 48, 72, 144, 240, 432, 480, 576, 720, 1152, 1440, 2880, 4320, 5760, 8640, 11520, 17280, 25920, 30240, 34560, 40320, 51840, 60480, 69120, 80640, 103680, 120960, 161280, 181440, 207360, 241920, 362880, 483840, 725760, 967680
Offset: 1

Views

Author

Alonso del Arte, Sep 05 2004

Keywords

Comments

If you inspect PhiAnsYldList after running the Mathematica program below, the zeros with even-numbered indices should correspond to the nontotients (A005277).
Where records occur in A014197. - T. D. Noe, Jun 13 2006
Cf. A131934.

Examples

			a(4) = 8 since phi(x) = 8 has the solutions {15, 16, 20, 24, 30}, one more solution than a(3) = 4 for which phi(x) = 4 has solutions {5, 8, 10, 12}.
		

Crossrefs

A subsequence of A007374.

Programs

  • Maple
    HighlyTotientNumbers := proc(n) # n > 1 is search maximum
    local L, m, i, r; L := NULL; m := 0;
    for i from 1 to n do
      r := nops(numtheory[invphi](i));
      if r > m then L := L,[i,r]; m := r fi
    od; [L] end:
    A097942_list := n -> seq(s[1], s = HighlyTotientNumbers(n));
    A097942_list(500); # Peter Luschny, Sep 01 2012
  • Mathematica
    searchMax = 2000; phiAnsYldList = Table[0, {searchMax}]; Do[phiAns = EulerPhi[m]; If[phiAns <= searchMax, phiAnsYldList[[phiAns]]++ ], {m, 1, searchMax^2}]; highlyTotientList = {1}; currHigh = 1; Do[If[phiAnsYldList[[n]] > phiAnsYldList[[currHigh]], highlyTotientList = {highlyTotientList, n}; currHigh = n], {n, 2, searchMax}]; Flatten[highlyTotientList]
  • PARI
    { A097942_list(n) = local(L, m, i, r);
      m = 0;
      for(i=1, n,
    \\ from Max Alekseyev, http://home.gwu.edu/~maxal/gpscripts/
       r = numinvphi(i);
       if(r > m, print1(i,", "); m = r) );
    } \\ Peter Luschny, Sep 01 2012
  • Sage
    def HighlyTotientNumbers(n) : # n > 1 is search maximum.
        R = {}
        for i in (1..n^2) :
            r = euler_phi(i)
            if r <= n :
                R[r] = R[r] + 1 if r in R else 1
        # print R.keys()   # A002202
        # print R.values() # A058277
        P = []; m = 1
        for l in sorted(R.keys()) :
            if R[l] > m : m = R[l]; P.append((l,m))
        # print [l[0] for l in P] # A097942
        # print [l[1] for l in P] # A131934
        return P
    A097942_list = lambda n: [s[0] for s in HighlyTotientNumbers(n)]
    A097942_list(500) # Peter Luschny, Sep 01 2012
    

Extensions

Edited and extended by Robert G. Wilson v, Sep 07 2004

A179188 Numbers n such that phi(n) = phi(n+6), with Euler's totient function phi=A000010.

Original entry on oeis.org

24, 34, 36, 39, 43, 44, 57, 72, 78, 82, 84, 93, 96, 108, 111, 146, 178, 201, 216, 222, 225, 226, 228, 306, 327, 364, 366, 381, 399, 417, 432, 438, 442, 466, 471, 482, 516, 527, 540, 543, 562, 576, 597, 610, 626, 633, 648, 706, 714, 732, 738, 802, 818, 866, 898, 912, 921, 924, 942, 948, 972, 1011
Offset: 1

Views

Author

M. F. Hasler, Jan 05 2011

Keywords

Comments

There are 1385502728 terms under 10^12. - Jud McCranie, Feb 13 2012

Crossrefs

Programs

Formula

A000010(a(n)) = A000010(a(n)+6).

A235137 a(n) = Sum_{k = 1..n} k^phi(n), where phi(n) = A000010(n).

Original entry on oeis.org

1, 3, 14, 30, 979, 91, 184820, 8772, 978405, 25333, 40851766526, 60710, 36720042483591, 19092295, 5666482312, 9961449608, 76762718946972480009, 105409929, 164309788542828686799730, 70540730666, 15909231318568907, 67403375450475, 1433191209985108404653810959324, 351625763020, 15975648280734359596251725645
Offset: 1

Views

Author

Jonathan Sondow and Emmanuel Tsukerman, Jan 03 2014

Keywords

Comments

a(n) == -1 (mod n) if and only if n is prime or is a Giuga number A007850.
a(n) == 1 (mod n) if (and probably only if) n is a primary pseudoperfect number A054377.

Examples

			a(4) = 30 since 1^(phi(4)) + 2^(phi(4)) + 3^(phi(4)) + 4^(phi(4))= 1^2 + 2^2 + 3^2 + 4^2 = 1 + 4 + 9 + 16 = 30.
a(5) = 979, since phi(5) = 4 and 1^4 + 2^4 + 3^4 + 4^4 + 5^4 = 1 + 16 + 81 + 256 + 625 = 979.
a(6) = 91, since phi(6) = 2 and 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 = 1 + 4 + 9 + 16 + 25 + 36 = 91.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[PowerMod[i, EulerPhi@n, n], {i, n}]
  • PARI
    a(n) = sum(k=1, n , k^eulerphi(n)); \\ Michel Marcus, Oct 21 2015

Formula

a(n) (mod n) = A235138(n).

A295502 a(n) = phi(5^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 8, 60, 192, 1400, 4320, 39060, 119808, 894240, 2912000, 24414060, 62208000, 610351560, 1959874560, 13154400000, 44043337728, 380537036928, 997843069440, 9485297382000, 25606963200000, 230106651919200, 748687423334400, 5959800062798400, 15138938880000000
Offset: 1

Views

Author

Seiichi Manyama, Nov 22 2017

Keywords

Comments

Faye et al. prove that no term is of the form 5^k-1. - Michel Marcus, Jun 16 2024

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), this sequence (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[5^Range[25] - 1] (* Paolo Xausa, Jun 18 2024 *)
  • PARI
    {a(n) = eulerphi(5^n-1)}

Formula

a(n) = n*A027741(n).
a(n) = A000010(A024049(n)). - Michel Marcus, Jun 16 2024

A319340 Sum of Euler totient function and its Dirichlet inverse: a(n) = A000010(n) + A023900(n).

Original entry on oeis.org

2, 0, 0, 1, 0, 4, 0, 3, 4, 8, 0, 6, 0, 12, 16, 7, 0, 8, 0, 12, 24, 20, 0, 10, 16, 24, 16, 18, 0, 0, 0, 15, 40, 32, 48, 14, 0, 36, 48, 20, 0, 0, 0, 30, 32, 44, 0, 18, 36, 24, 64, 36, 0, 20, 80, 30, 72, 56, 0, 8, 0, 60, 48, 31, 96, 0, 0, 48, 88, 0, 0, 26, 0, 72, 48, 54, 120, 0, 0, 36, 52, 80, 0, 12, 128, 84, 112, 50, 0, 16
Offset: 1

Views

Author

Antti Karttunen, Sep 17 2018

Keywords

Crossrefs

Programs

Formula

a(n) = A000010(n) + A023900(n).
a(n) = A318833(n) - A051953(n).

A366635 a(n) = phi(7^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

2, 16, 108, 640, 5600, 36288, 264992, 1536000, 12387168, 85120000, 658519752, 3135283200, 32296336800, 216063877120, 1450340640000, 8333819904000, 77537969371008, 488237947481088, 3790563394976072, 19162214400000000, 170264753751665664, 1245495178700551680
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), this sequence (k=7), A366654 (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[7^Range[30] - 1] (* Wesley Ivan Hurt, Oct 15 2023 *)
  • PARI
    {a(n) = eulerphi(7^n-1)}

A366654 a(n) = phi(8^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

6, 36, 432, 1728, 27000, 139968, 1778112, 6635520, 113467392, 534600000, 6963536448, 26121388032, 465193834560, 2427720325632, 28548223200000, 109586090557440, 1910296842179040, 9618417501143040, 123523151337020736, 406467072000000000, 7713001620195508224
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), this sequence (k=8), A366663 (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[8^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(8^n-1)}
    
  • Python
    from sympy import totient
    def A366654(n): return totient((1<<3*n)-1) # Chai Wah Wu, Oct 15 2023

Formula

a(n) = A053287(3*n). - Max Alekseyev, Jan 09 2024

A366663 a(n) = phi(9^n-1), where phi is Euler's totient function (A000010).

Original entry on oeis.org

4, 32, 288, 2560, 26400, 165888, 2384928, 15728640, 141087744, 1246080000, 14758128000, 85996339200, 1270928131200, 8810420097024, 70207948800000, 677066362060800, 8218041445152000, 43129128265187328, 674757689572915200, 4238841176064000000
Offset: 1

Views

Author

Sean A. Irvine, Oct 15 2023

Keywords

Crossrefs

phi(k^n-1): A053287 (k=2), A295500 (k=3), A295501 (k=4), A295502 (k=5), A366623 (k=6), A366635 (k=7), A366654 (k=8), this sequence (k=9), A295503 (k=10), A366685 (k=11), A366711 (k=12).

Programs

  • Mathematica
    EulerPhi[9^Range[30] - 1]
  • PARI
    {a(n) = eulerphi(9^n-1)}

Formula

a(n) = A295500(2*n) = 2 * A295500(n) * A366579(n). - Max Alekseyev, Jan 07 2024
Previous Showing 31-40 of 4244 results. Next