cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 4245 results. Next

A239443 a(n) = phi(n^9), where phi = A000010.

Original entry on oeis.org

1, 256, 13122, 131072, 1562500, 3359232, 34588806, 67108864, 258280326, 400000000, 2143588810, 1719926784, 9788768652, 8854734336, 20503125000, 34359738368, 111612119056, 66119763456, 305704134738, 204800000000, 453874312332, 548758735360, 1722841676182, 880602513408, 3051757812500
Offset: 1

Views

Author

Keywords

Comments

Number of solutions of the equation GCD(x_1^2 + ... + x_9^2,n)=1 with 0 < x_i <= n.
In general, for m>0, Sum_{k=1..n} phi(k^m) ~ 6 * n^(m+1) / ((m+1)*Pi^2). - Vaclav Kotesovec, Feb 02 2019

Crossrefs

Defining Phi_k(n):= number of solutions of the equation GCD(x_1^2 + ... + x_k^2,n)=1 with 0 < x_i <= n.
Phi_1(n) = phi(n) = A000010(n).
Phi_2(n) = A079458(n).
Phi_3(n) = phi(n^3) = n^2*phi(n)= A053191(n).
Phi_4(n) = A227499(n).
Phi_5(n) = phi(n^5) = n^4*phi(n)= A238533(n).
Phi_6(n) = A238534(n).
Phi_7(n) = phi(n^7) = n^6*phi(n)= A239442(n).
Phi_8(n) = A239441(n).
Phi_9(n) = phi(n^9) = n^8*phi(n)= A239443(n).

Programs

Formula

Dirichlet g.f.: zeta(s - 9) / zeta(s - 8). The n-th term of the Dirichlet inverse is n^8 * A023900(n) = (-1)^omega(n) * a(n) / A003557(n), where omega = A001221. - Álvar Ibeas, Nov 24 2017
a(n) = n^8 * phi(n). - Altug Alkan, Mar 10 2018
Sum_{k=1..n} a(k) ~ 3*n^10 / (5*Pi^2). - Vaclav Kotesovec, Feb 02 2019
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + p/(p^10 - p^9 - p + 1)) = 1.00399107654133714629... - Amiram Eldar, Dec 06 2020

A285702 a(n) = A000010(A064216(n)).

Original entry on oeis.org

1, 1, 2, 4, 2, 6, 10, 2, 12, 16, 4, 18, 6, 4, 22, 28, 6, 8, 30, 10, 36, 40, 4, 42, 20, 12, 46, 12, 16, 52, 58, 8, 20, 60, 18, 66, 70, 6, 24, 72, 8, 78, 24, 22, 82, 40, 28, 32, 88, 12, 96, 100, 8, 102, 106, 30, 108, 36, 20, 48, 42, 36, 18, 112, 40, 126, 64, 8, 130, 136, 42, 60, 44, 20, 138, 148, 24, 56, 150, 46, 72, 156, 12, 162, 110, 32, 166, 24, 52, 172, 178
Offset: 1

Views

Author

Antti Karttunen, Apr 26 2017

Keywords

Crossrefs

Odd bisection of the following sequences: A347115, A348045, A349127, A349128.

Programs

  • Mathematica
    Table[EulerPhi@ If[n == 1, 1, Apply[Times, FactorInteger[2 n - 1] /. {p_, e_} /; p > 2 :> NextPrime[p, -1]^e]], {n, 91}] (* Michael De Vlieger, Apr 26 2017 *)
  • Scheme
    (define (A285702 n) (A000010 (A064216 n)))

Formula

a(n) = A000010(A064216(n)).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Product_{p prime} (p^3/((p+1)*(p^2-q(p)))) = 0.5366875995..., where q(p) = prevprime(p) (A151799) if p > 2 and q(2) = 1. - Amiram Eldar, Dec 21 2023

A295301 a(n) = n - phi(sigma(n)), where phi = A000010 and sigma = A000203.

Original entry on oeis.org

0, 0, 1, -2, 3, 2, 3, 0, -3, 4, 7, 0, 7, 6, 7, -14, 11, -6, 11, 8, 5, 10, 15, 8, -5, 14, 11, 4, 21, 6, 15, -4, 17, 16, 19, -36, 19, 22, 15, 16, 29, 10, 23, 20, 21, 22, 31, -12, 13, -10, 27, 10, 35, 22, 31, 24, 25, 34, 43, 12, 31, 30, 15, -62, 41, 18, 35, 32, 37, 22, 47, -24, 37, 38, 15, 28, 45, 30, 47, 20
Offset: 1

Views

Author

Antti Karttunen, Nov 21 2017

Keywords

Crossrefs

Cf. A001229 (positions of zeros), A066694 (of negative terms).
Cf. also A295302, A295305.

Programs

  • GAP
    a:=List([1..80],n->n-Phi(Sigma(n)));; Print(a); # Muniru A Asiru, Jan 02 2019
  • Magma
    [n-EulerPhi(SumOfDivisors(n)):n in [1..100]]; // Marius A. Burtea, Jan 01 2019
    
  • Maple
    with(numtheory): seq(n-phi(sigma(n)),n=1..80); # Muniru A Asiru, Jan 02 2019
  • Mathematica
    Array[# - EulerPhi@ DivisorSigma[1, #] &, 80] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    A295301(n) = (n - eulerphi(sigma(n)));
    

Formula

a(n) = n - A062401(n).

A324104 a(1) = 0; for n > 1, a(n) = A000010(A156552(n)).

Original entry on oeis.org

0, 1, 1, 2, 2, 4, 4, 6, 2, 6, 8, 10, 16, 16, 4, 8, 32, 12, 64, 18, 6, 20, 128, 22, 4, 48, 6, 24, 256, 12, 512, 30, 16, 84, 8, 18, 1024, 256, 20, 24, 2048, 36, 4096, 66, 10, 324, 8192, 46, 8, 20, 48, 130, 16384, 28, 12, 70, 84, 800, 32768, 42, 65536, 1364, 18, 36, 32, 44, 131072, 216, 256, 40, 262144, 40, 524288, 3840, 12, 408, 16, 108
Offset: 1

Views

Author

Antti Karttunen, Feb 18 2019

Keywords

Crossrefs

Cf. also A323243, A324105 (sigma and tau similarly permuted).

Programs

  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n))));
    A324104(n) = if(1==n,0,eulerphi(A156552(n)));

A330068 Numbers k such that Sum_{i=1..k} i^A000010(k) == 2 (mod k).

Original entry on oeis.org

1, 3, 4, 12, 84, 3612, 94116, 4429004844, 104990793204
Offset: 1

Views

Author

Keywords

Comments

Apparently includes the sequence 2*A054377.
Additional terms include 4429004844, 104990793204, and 16980843167119376821413542522172.
a(10) > 10^13. - Giovanni Resta, Feb 27 2020

Crossrefs

Programs

  • Mathematica
    G[n_, k_] := G[n, k] = Mod[Sum[PowerMod[i, k, n], {i, 1, n}], n];
    Select[Range[2000], G[#, EulerPhi[#]] == 2 &]
    fa=FactorInteger;
    se[n_, k_] := Select[Transpose[fa[n]][[1]], IntegerQ[k/(# - 1)] &];
    sumlis[li_] := Sum[li[[i]], {i, 1, Length[li]}]
    Table[If[Mod[-n/se[n, EulerPhi[n]] // sumlis, n] == 2, n], {n, 1, 1000000}] // Union
  • PARI
    isok(n) = sumdiv(n, d, eulerphi(n/d) * Mod(d, n)^eulerphi(n)) == 2; \\ Daniel Suteu, Jan 13 2020

Extensions

a(8)-a(9) from Giovanni Resta, Feb 27 2020

A330069 Numbers k such that Sum_{i=1..k} i^A000010(k) == -2 (mod k).

Original entry on oeis.org

1, 4, 60, 1716, 3444, 132396, 4428816612, 48846257124
Offset: 1

Views

Author

Keywords

Comments

Apparently includes the sequence 2*A007850.
Additional terms include 4428816612, 48846257124, 865498410347676, 29474266940021148, 1101686782618260636, 488394001964999430175732692, 1108159829234141602577157118356, 3821334362841015969111519832677012.
a(9) > 10^13. - Giovanni Resta, Feb 27 2020

Crossrefs

Programs

  • Mathematica
    G[n_, k_] := G[n, k] = Mod[Sum[PowerMod[i, k, n], {i, 1, n}], n];
    Select[Range[2000], G[#, EulerPhi[#]] == n-2 &]
    fa=FactorInteger;
    se[n_, k_] := Select[Transpose[fa[n]][[1]], IntegerQ[k/(# - 1)] &];
    sumlis[li_] := Sum[li[[i]], {i, 1, Length[li]}]
    Table[If[Mod[-n/se[n, EulerPhi[n]] // sumlis, n] == n-2, n], {n, 1,
       1000000}] // Union
  • PARI
    isok(n) = sumdiv(n, d, eulerphi(n/d) * Mod(d, n)^eulerphi(n)) == -2; \\ Daniel Suteu, Jan 13 2020

Extensions

a(7)-a(8) from Giovanni Resta, Feb 27 2020

A053478 Sum of iterates when phi, A000010, is iterated until fixed point 1.

Original entry on oeis.org

1, 3, 6, 7, 12, 9, 16, 15, 18, 17, 28, 19, 32, 23, 30, 31, 48, 27, 46, 35, 40, 39, 62, 39, 60, 45, 54, 47, 76, 45, 76, 63, 68, 65, 74, 55, 92, 65, 78, 71, 112, 61, 104, 79, 84, 85, 132, 79, 110, 85, 114, 91, 144, 81, 126, 95, 112, 105, 164, 91, 152, 107, 118, 127, 144, 101
Offset: 1

Views

Author

Labos Elemer, Jan 14 2000

Keywords

Comments

For n = 2^w, the sum is 2^(w+1) - 1.

Examples

			If phi is applied repeatedly to n = 91, the iterates {91, 72, 24, 8, 4, 2, 1} are obtained. Their sum is a(91) = 91 + 72 + 24 + 8 + 4 + 2 + 1 = 202.
		

Crossrefs

Programs

  • Haskell
    a053478 = (+ 1) . sum . takeWhile (/= 1) . iterate a000010
    -- Reinhard Zumkeller, Oct 27 2011
    
  • Mathematica
    f[n_] := Plus @@ Drop[ FixedPointList[ EulerPhi, n], -1]; Table[ f[n], {n, 66}] (* Robert G. Wilson v, Dec 16 2004 *)
    f[1] := 1; f[n_] := n + f[EulerPhi[n]]; Table[f[n], {n, 66}] (* Carlos Eduardo Olivieri, May 26 2015 *)
  • PARI
    a(n)=my(s=n);while(n>1,s+=n=eulerphi(n)); s \\ Charles R Greathouse IV, Feb 21 2013

Formula

a(n) = n + a(phi(n)).
a(n) = A092693(n) + n. - Vladeta Jovovic, Jul 02 2004

A078892 Numbers n such that phi(n) - 1 is prime, where phi is Euler's totient function (A000010).

Original entry on oeis.org

5, 7, 8, 9, 10, 12, 13, 14, 15, 16, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, 33, 35, 36, 38, 39, 42, 43, 44, 45, 49, 50, 51, 52, 54, 56, 61, 62, 64, 65, 66, 68, 69, 70, 72, 73, 77, 78, 80, 81, 84, 86, 90, 91, 92, 93, 95, 96, 98, 99, 102, 103, 104, 105, 109, 111, 112, 117
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

For all primes p: p is in the sequence iff p is the greater member of a twin prime pair (A006512), see A078893.
Union of A006512 and A078893. - Ray Chandler, May 26 2008

Crossrefs

Programs

A112955 Greatest number m such that phi(m) = n*tau(m), with phi=A000010 and tau=A000005; a(n)=0 if no such m exists.

Original entry on oeis.org

30, 120, 210, 420, 330, 840, 294, 1260, 1080, 1320, 690, 2520, 318, 1470, 2310, 3360, 0, 3780, 0, 4620, 1290, 2760, 1410, 5460, 3000, 1590, 7560, 5880, 1770, 9240, 0, 10080, 4830, 1236, 3234, 10920, 894, 0, 2370, 13860, 2490, 6090, 1038, 9660, 11880
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 07 2005

Keywords

Comments

Each term is a multiple of 6. [Max Alekseyev, Mar 01 2010]

Examples

			a(1) = A020488(A112954(1)) = A020488(7) = 30;
a(2) = A062516(A112954(2)) = A062516(9) = 120;
a(3) = A063469(A112954(3)) = A063469(10) = 210;
a(4) = A063470(A112954(4)) = A063470(9) = 420.
		

Crossrefs

Cf. A112954.
Cf. A175667. [Enrique Pérez Herrero, Oct 22 2010]

Extensions

More terms from Max Alekseyev, Mar 01 2010

A130207 Diagonalized matrix of A000010, Euler totient function phi.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6
Offset: 1

Views

Author

Gary W. Adamson, May 16 2007

Keywords

Examples

			First few rows of the triangle are:
1;
0, 1;
0, 0, 2;
0, 0, 0, 2;
0, 0, 0, 0, 4;
...
		

Crossrefs

Programs

  • Maple
    A130207 := proc(n,k)
        if k = n then
            numtheory[phi](n);
        else
            0;
        end if;
    end proc:
    seq(seq(A130207(n,k),k=1..n),n=1..15) ;
  • PARI
    for(n=1,9,for(k=2,n,print1("0, "));print1(eulerphi(n)", ")) \\ Charles R Greathouse IV, Feb 19 2013
    
  • PARI
    A130207(n) = if(ispolygonal(n,3), eulerphi((sqrtint(1+(n*8))-1)/2), 0); \\ Antti Karttunen, Jan 17 2025

Formula

T(n,n) = A000010(n).
T(n,k) = 0, if k <> n.

Extensions

Data section extended up to a(105) by Antti Karttunen, Jan 17 2025
Previous Showing 81-90 of 4245 results. Next