cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 142 results. Next

A266180 Decimal representation of the n-th iteration of the "Rule 6" elementary cellular automaton starting with a single ON (black) cell.

Original entry on oeis.org

1, 6, 16, 96, 256, 1536, 4096, 24576, 65536, 393216, 1048576, 6291456, 16777216, 100663296, 268435456, 1610612736, 4294967296, 25769803776, 68719476736, 412316860416, 1099511627776, 6597069766656, 17592186044416, 105553116266496, 281474976710656
Offset: 0

Views

Author

Robert Price, Dec 22 2015

Keywords

Comments

A001025 is a subsequence. - Altug Alkan, Dec 23 2015
Rules 38, 134 and 166 also generate this sequence.

References

  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Programs

  • Mathematica
    rule=6; rows=20; ca=CellularAutomaton[rule,{{1},0},rows-1,{All,All}]; (* Start with single black cell *) catri=Table[Take[ca[[k]],{rows-k+1,rows+k-1}],{k,1,rows}]; (* Truncated list of each row *) Table[FromDigits[catri[[k]],2],{k,1,rows}]   (* Decimal Representation of Rows *)
    LinearRecurrence[{0,16},{1,6},30] (* Harvey P. Dale, May 25 2016 *)
  • Python
    print([int(4**(n-1)*(5-(-1)**n)) for n in range(30)]) # Karl V. Keller, Jr., Jun 03 2021

Formula

From Colin Barker, Dec 23 2015 and Apr 13 2019: (Start)
a(n) = 4^(n-1)*(5-(-1)^n).
a(n) = 16*a(n-2) for n>1.
G.f.: (1+6*x) / ((1-4*x)*(1+4*x)).
(End)

A028359 Two-bell analog of A028355.

Original entry on oeis.org

1, 2, 12, 121, 212, 1212, 12121, 21212, 121212, 1212121, 2121212, 12121212, 121212121, 212121212, 1212121212, 12121212121, 21212121212, 121212121212, 1212121212121, 2121212121212, 12121212121212, 121212121212121, 212121212121212, 1212121212121212, 12121212121212121
Offset: 1

Views

Author

Keywords

Comments

Consider the infinite digits: 121212... . We can break this into a sequence of integers such that the sum of digits in the n-th value is n. - Seiichi Manyama, Oct 31 2018

Crossrefs

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = 101*a(n-3) - 100*a(n-6) for n > 6.
G.f.: x*(10*x^4 + 20*x^3 + 12*x^2 + 2*x + 1)/(100*x^6 - 101*x^3 + 1). (End)

Extensions

More terms from Seiichi Manyama, Oct 31 2018

A052997 Expansion of (1+x-x^3)/((1-2*x)*(1-x^2)).

Original entry on oeis.org

1, 3, 7, 14, 29, 58, 117, 234, 469, 938, 1877, 3754, 7509, 15018, 30037, 60074, 120149, 240298, 480597, 961194, 1922389, 3844778, 7689557, 15379114, 30758229, 61516458, 123032917, 246065834, 492131669, 984263338, 1968526677
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Prod(Union(Sequence(Prod(Z,Z)),Z),Sequence(Union(Z,Z)))},unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
  • Mathematica
    f[s_List] := Block[{a = s[[-1]]}, Append[s, If[ OddQ@ Length@ s, 2a +1, 2a]]]; Join[{1},  Nest[f, {3}, 30]] (* or *)
    CoefficientList[ Series[(1 + x - x^3)/(1 - 2x - x^2 + 2x^3), {x, 0, 30}], x] (* Robert G. Wilson v, Jul 20 2017 *)
    LinearRecurrence[{2,1,-2},{1,3,7,14},40] (* Harvey P. Dale, May 27 2019 *)

Formula

G.f.: -(-x+x^3-1)/(-1+x^2)/(-1+2*x).
Recurrence: {a(0)=1, -2*a(n)-a(n+1)+a(n+2)-1, a(1)= 3, a(2)=7, a(3)=14}, 11/6*2^n + Sum(-1/6*(2 + _alpha)*_alpha^(-1-n), _alpha=RootOf(-1 + _Z^2))
a(n) = 2*a(n-1)+1 for even n, otherwise a(n) = 2*a(n-1), with a(0)=1, a(1)=3. [Bruno Berselli, Jun 19 2014]
3*a(n) = 11*2^(n-1)-A000034(n) for n>0. - R. J. Mathar, Feb 27 2019

Extensions

More terms from James Sellers, Jun 06 2000

A115008 a(n) = a(n-1) + a(n-3) + a(n-4).

Original entry on oeis.org

1, 0, 2, 4, 5, 7, 13, 22, 34, 54, 89, 145, 233, 376, 610, 988, 1597, 2583, 4181, 6766, 10946, 17710, 28657, 46369, 75025, 121392, 196418, 317812, 514229, 832039, 1346269, 2178310, 3524578, 5702886, 9227465, 14930353, 24157817, 39088168
Offset: 0

Views

Author

Creighton Dement, Feb 23 2006

Keywords

Comments

a(n+2) - a(n+1) - a(n) gives match to A000034, apart from signs.

Crossrefs

Programs

  • Magma
    A115008:= func< n | Fibonacci(n+1) - (n mod 2) + 2*0^((n+1) mod 4) >;
    [A115008(n): n in [0..50]]; // G. C. Greubel, Aug 24 2025
    
  • Mathematica
    Table[Fibonacci[n+1] -I^(n-1)*Mod[n,2], {n,0,50}] (* G. C. Greubel, Aug 24 2025 *)
  • SageMath
    def A115008(n): return fibonacci(n+1) -i**(n-1)*(n%2)
    print([A115008(n) for n in range(51)]) # G. C. Greubel, Aug 24 2025

Formula

a(2*n) = A000045(2*n+1) = A001519(n).
G.f.: (1-x+2*x^2+x^3)/((1+x^2)*(1-x-x^2)).
a(2*n+1) = (-1)^(n+1) + A001906(n+1) (compare with a similar property for A116697) - Creighton Dement, Mar 31 2006
From G. C. Greubel, Aug 24 2025: (Start)
a(n) = A000045(n+1) - i^(n-1)*(n mod 2).
E.g.f.: exp(x/2)*(cosh(p*x) + (1/(2*p))*sinh(p*x)) - sin(x), where 2*p = sqrt(5). (End)

A115356 Matrix (1,x)+(x,x^2) in Riordan array notation.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Jan 21 2006

Keywords

Comments

As a flat sequence, with starting offset=1, a(n) = 1 if n is a triangular number (A000217) or twice a square (A001105), otherwise 0. - Antti Karttunen, Jan 19 2025

Examples

			Triangle begins:
n\k| 0  1  2  3  4  5  6  7  8  9
---+-------------------------------
0  | 1;
1  | 1, 1;
2  | 0, 0, 1;
3  | 0, 1, 0, 1;
4  | 0, 0, 0, 0, 1;
5  | 0, 0, 1, 0, 0, 1;
6  | 0, 0, 0, 0, 0, 0, 1;
7  | 0, 0, 0, 1, 0, 0, 0, 1;
8  | 0, 0, 0, 0, 0, 0, 0, 0, 1;
9  | 0, 0, 0, 0, 1, 0, 0, 0, 0, 1;
(row and column numbering added by _Antti Karttunen_, Jan 19 2025)
		

Crossrefs

Row sums are A000034. Diagonal sums are A115357. Inverse is A115358.
Cf. also A115359.

Programs

Formula

Number triangle T(n, k) = if(n=k, 1, 0) OR if(n=2k+1, 1, 0).
a(n) = A010054(n) + A379480(n). [As a flat sequence with starting offset 1] - Antti Karttunen, Jan 19 2025

A180916 Number of convex polyhedra with n faces that are all regular polygons.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 2, 7, 3, 6, 4, 7, 3, 13, 2, 5, 4, 6, 1, 9, 2, 6, 1, 4, 1, 8, 4, 2, 1, 3, 1, 10, 1, 3, 1, 2, 4, 3, 1, 2, 1, 9, 1, 2, 1, 2, 2, 2, 1, 2, 1, 9, 1, 2, 1, 2, 1, 2, 1, 2, 1, 9, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

J. Lowell, Sep 23 2010

Keywords

Comments

For all n > 92, the sequence is identical to A000034 because for large n only prisms (even and odd n) and antiprisms (even n) are convex and have regular polygonal faces. The MathWorld article about Johnson Solids is very informative about this topic.
In a regular-faced polyhedron, any two faces with the same number of edges are congruent. (Proof: As the two faces are regular polygons, it suffices to show their edges have the same length. But as all faces are regular polygons and the polyhedron is connected, all edges have the same length.) - Jonathan Sondow, Feb 11 2018

Examples

			a(6) = 3 because the cube, pentagonal pyramid, and triangular bipyramid all qualify. a(7) = 2 because only the pentagonal prism and elongated triangular pyramid qualify; the hexagonal pyramid is impossible with equilateral triangles
		

Crossrefs

Programs

  • Mathematica
    f = Tally[Join[PolyhedronData["Platonic", "FaceCount"], PolyhedronData["Archimedean", "FaceCount"], PolyhedronData["Johnson", "FaceCount"], {PolyhedronData[{"Prism", 3}, "FaceCount"]}]]; f2 = Transpose[f]; cnt = Table[0, {n, 100}]; cnt[[f2[[1]]]] = f2[[2]]; Do[cnt[[n]]++, {n, 7, 100}] (* add prisms *); Do[ cnt[[n]]++, {n, 10, 100, 2}] (* add antiprisms *); cnt (* T. D. Noe, Mar 04 2011 *)

Formula

a(A296602(n)) = 1. - Jonathan Sondow, Jan 29 2018

Extensions

More terms from J. Lowell, Feb 28 2011
Corrected by T. D. Noe, Mar 04 2011

A191372 The Sierpinski-Stern triangle.

Original entry on oeis.org

0, 1, 2, 1, 2, 1, 3, 2, 3, 2, 3, 1, 4, 2, 3, 2, 3, 1, 4, 3, 4, 2, 3, 1, 4, 3, 5, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 3, 5, 2, 5, 3, 4, 1, 6, 3, 6, 4, 5, 2, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 4, 6, 2, 5, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3
Offset: 0

Views

Author

Johannes W. Meijer, Jun 05 2011

Keywords

Comments

The knight sums of the first and second kind Kn1y(n) = Kn2y(n), y >= 1, see A180662 for their definitions, of Sierpinski's triangle A047999 lead to the formula Kn1y(n) = A002487(n+(2*y-1)) - AS2S2S2(n,d) where the AS2S2S2(n,d) is the infinite concatenation of a S2(T, d = y-1) sequence; see for the first ten S2(T, d) and the first four Kn1y(n) the examples.
The A191372 sequence is the concatenation of all S2(T, d) sequences, d >= 0. The lengths of the S2(T, d) sequences are 2^ceiling(log(d)/log(2)) for d >= 1 while the length of S2(T, d=0) is 1.
Both the concatenation of the S2(T, d = 2^p) sequences, p >= 0, and the concatenation of the S2(T, d = 2^p-1) sequences, p >= 0, lead to Stern’s diatomic series A002487(n), n >= 2.
The differences of the sequences (AS2S2S2(T, 2^p-delta) - AS2S2S2(T, 2^(p-1)-delta)), T from 0 to (2^(p-1) -1) and 1 <= delta <= (2^(p-1)-1) (take care that p <= pmax), lead to sequences that are snippets of A002487 and, surprisingly, their reverse; see the examples.
The row sums of the Sierpinski-Stern triangle are given by the terms of A191487.

Crossrefs

Cf. A047999 (Sierpinski), A002487 (Stern).

Programs

  • Maple
    nmax:=2^5; pmax:=log(nmax)/log(2)-1; A047999:=proc(n,k) option remember; A047999(n,k) :=binomial(n,k) mod 2 end: A002487:=proc(n) option remember; if n<=1 then n elif n mod 2=0 then A002487(n/2); else A002487((n-1)/2)+A002487((n+1)/2); fi; end: d:=0: for n from 0 to nmax-d-1 do Kn1(n,d):= add(A047999(n-k+d, k+d),k=0..floor(n/2)): AS2S2S2(n,d):= A002487(n+1+2*d)-Kn1(n,d): od: for p from 1 to pmax do for d from 2^(p-1) to 2^p do for n from 0 to nmax-d-1 do Kn1(n,d):=add(A047999(n-k+d, k+d),k=0..floor(n/2)): AS2S2S2(n,d):= A002487(n+1+2*d)-Kn1(n,d) od: od: od: S2(0,0):=AS2S2S2(0,0): a(0):=S2(0,0): for d from 1 to 2^pmax do for Tx from 0 to 2^ceil(log(d)/log(2))-1 do S2(Tx,d):=AS2S2S2(Tx,d) od: od: Ty:=0: for d from 1 to 2^pmax do for Tx from 0 to 2^ceil(log(d)/log(2))-1 do Ty:=Ty+1: a(Ty):=S2(Tx,d) od: od: S2(0,0); for d from 1 to 2^pmax do seq(S2(Tx,d), Tx=0..2^ceil(log(d)/ log(2))-1) od; seq(a(n),n=0..Ty);

Formula

The first few S2(T, d) rows of the Sierpinski-Stern triangle are:
d=0: [0]
d=1: [1]
d=2: [2, 1]
d=3: [2, 1, 3, 2]
d=4: [3, 2, 3, 1]
d=5: [4, 2, 3, 2, 3, 1, 4, 3]
d=6: [4, 2, 3, 1, 4, 3, 5, 2]
d=7: [3, 1, 4, 3, 5, 2, 5, 3]
d=8: [4, 3, 5, 2, 5, 3, 4, 1]
d=9: [6, 3, 6, 4, 5, 2, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4]
The first four Kn1y(n), y = d+1, sequences:
Kn11(n) = A002487(n+1) - A000004(n)
Kn12(n) = A002487(n+3) - A000012(n)
Kn13(n) = A002487(n+5) - A000034(n+1)
Kn14(n) = A002487(n+7) - A157810(n+1)
Three (AS2S2S2(T, 2^p-delta) - AS2S2S2(T, 2^(p-1)-delta)) sequences for p=6:
delta = 1: [1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4]
delta = 8: [4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1]
delta = 16: [5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 4, 3, 5, 2, 5, 3, 4, 1, 3, 2, 3, 1, 2, 1, 1, 0]

A207606 Triangle of coefficients of polynomials u(n,x) jointly generated with A207607; see the Formula section.

Original entry on oeis.org

1, 2, 3, 2, 4, 7, 2, 5, 16, 11, 2, 6, 30, 36, 15, 2, 7, 50, 91, 64, 19, 2, 8, 77, 196, 204, 100, 23, 2, 9, 112, 378, 540, 385, 144, 27, 2, 10, 156, 672, 1254, 1210, 650, 196, 31, 2, 11, 210, 1122, 2640, 3289, 2366, 1015, 256, 35, 2, 12, 275, 1782, 5148, 8008
Offset: 1

Views

Author

Clark Kimberling, Feb 19 2012

Keywords

Comments

As triangle T(n,k) with 0 <= k <= n, it is (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 03 2012

Examples

			First five rows:
  1;
  2;
  3,  2;
  4,  7,  2;
  5, 16, 11,  2;
Triangle (2, -1/2, 1/2, 0, 0, 0, ...) DELTA (0, 1, 0, 0, 0, 0, ...), 0 <= k <= n, begins:
  1;
  2,   0;
  3,   2,   0;
  4,   7,   2,   0;
  5,  16,  11,   2,   0;
  6,  30,  36,  15,   2,   0;
  7,  50,  91,  64,  19,   2,   0;
  8,  77, 196, 204, 100,  23,   2,   0;
		

Crossrefs

Cf. A207607.

Programs

  • Maple
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=0 then n+2
        elif k=n then 2
        else 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k)
          fi; end:
    1, seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Mar 15 2020
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x]
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x]
    Table[Factor[u[n, x]], {n, 1, z}]
    Table[Factor[v[n, x]], {n, 1, z}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A207606 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A207607 *)
    (* Second program *)
    T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, n+2, If[k==n, 2, 2*T[n-1, k] - T[n-2, k] + T[n-1, k-1] ]]]; Join[{1}, Table[T[n, k], {n, 0, 10}, {k, 0, n}]]//Flatten (* G. C. Greubel, Mar 15 2020 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + v(n - 1, x)
    def v(n, x): return 1 if n==1 else x*u(n - 1, x) + (x + 1)*v(n - 1, x)
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 28 2017
    
  • Sage
    @CachedFunction
    def T(n, k):
        if (k<0 or k>n): return 0
        elif (k==1): return n+1
        elif (k==n): return 2
        else: return 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k)
    [1]+[[T(n, k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Mar 15 2020

Formula

u(n,x) = u(n-1,x) + v(n-1,x), v(n,x) = x*u(n-1,x) + (x+1)v(n-1,x), where u(1,x)=1, v(1,x)=1.
As triangle T(n,k) with 0 <= k <= n: g.f.: (1-y*x)/(1-(2+y)*x+x^2). - Philippe Deléham, Mar 03 2012
As triangle T(n,k) with 0 <= k <= n: Sum_{k=0..n} T(n,k)*x^k = A132677(n), A000034(n)*A057077(n), A057079(n), A000027(n+1), A001519(n+1), A001075(n), A002310(n), A038725(n), A172968(n) for x = -3, -2, -1, 0, 1, 2, 3, 4, 5 respectively. - Philippe Deléham, Mar 03 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k). - Philippe Deléham, Mar 03 2012
T(n,k) = C(n+k-1,2*k+1) + 2*C(n+k-1,2*k), where C is binomial. - Yuchun Ji, May 23 2019
T(n,k) = T(n-1,k) + A207607(n-1,k). - Yuchun Ji, May 28 2019

A208950 a(4*n) = n*(16*n^2-1)/3, a(2*n+1) = n*(n+1)*(2*n+1)/6, a(4*n+2) = (4*n+1)*(4*n+2)*(4*n+3)/6.

Original entry on oeis.org

0, 0, 1, 1, 5, 5, 35, 14, 42, 30, 165, 55, 143, 91, 455, 140, 340, 204, 969, 285, 665, 385, 1771, 506, 1150, 650, 2925, 819, 1827, 1015, 4495, 1240, 2728, 1496, 6545, 1785, 3885, 2109, 9139, 2470, 5330, 2870, 12341, 3311, 7095, 3795, 16215, 4324
Offset: 0

Views

Author

Paul Curtz, Mar 03 2012

Keywords

Comments

a(n+2) is divisible by A060819(floor(n/3)).
a(n) is divisible by A176672(floor(n/3)).
Denominator of a(n)/n is of period 24: 1,1,3,4,1,6,1,4,3,1,1,12,1,2,3,4,1,3,1,4,3,2,1,12 (two successive palindromes).
This is the fifth column of the triangle A107711, hence the formula involving gcd(n+2,4) given below follows. - Wolfdieter Lang, Feb 24 2014

Crossrefs

Programs

  • Magma
    [Binomial(n+1,3)*GCD(n+2,4)/4: n in [0..50]]; // G. C. Greubel, Sep 20 2018
  • Mathematica
    CoefficientList[Series[(x^2 + x^3 + 5 x^4 + 5 x^5 + 31 x^6 + 10 x^7 + 22 x^8 + 10 x^9 + 31 x^10 + 5 x^11 + 5 x^12 + x^13 + x^14)/((1 - x)^4 (1 + x)^4 (1 + 4 x^2 + 6 x^4 + 4 x^6 + x^8)), {x, 0, 47}], x] (* Bruno Berselli, Mar 11 2012 *)
  • Maxima
    A208950(n) := block(
            [a,npr] ,
            if equal(mod(n,4), 0) then (
                    a : n/12*(n^2-1)
            ) else if equal(mod(n,2),0) then (
                    a : (n-1)*n*(n+1)/6
            ) else (
                    npr : (n-1)/2,
                    a : npr*(npr+1)*n/6
            ) ,
            return(a)
    )$ /* R. J. Mathar, Mar 10 2012 */
    
  • PARI
    vector(50, n, n--; binomial(n+1,3)*gcd(n+2,4)/4) \\ G. C. Greubel, Sep 20 2018
    

Formula

a(n) = 4*a(n-4) - 6*a(n-8) + 4*a(n-12) - a(n-16).
a(n+1) = A002415(n+1)/A145979(n-1).
a(n) = A051724(n-1) * A051724(n) * A051724(n+1).
a(n) = A060819(n-1) * A060819(n) * A060819(n+1) / 3.
a(n) * a(n+4) = A061037(n+1) * A061037(n+2) * A061037(n+3) / 9.
a(n) = A138190(n)/A000034(n) for n > 0.
a(n) = A000292(n-1)/A176895(n+2) for n > 0.
a(n)/a(n+4) = n*(n^2-1)/((n+3)*(n+4)*(n+5)).
a(n)/a(n+12) = (n-1)*n*(n+1)/((n+11)*(n+12)*(n+13)).
G.f.: (x^2 + x^3 + 5*x^4 + 5*x^5 + 31*x^6 + 10*x^7 + 22*x^8 + 10*x^9 + 31*x^10 + 5*x^11 + 5*x^12 + x^13 + x^14) / ((1-x)^4*(1+x)^4*(1 + 4*x^2 + 6*x^4 + 4*x^6 + x^8)). - R. J. Mathar, Mar 10 2012
From Wolfdieter Lang, Feb 24 2014: (Start)
G.f.: (1 + x^12 + x*(1+x^10) + 5*x^2*(1+x^8) + 5*x^3*(1+x^7) + 31*x^4*(1+x^4) + 10*x^5*(1+x^2) + 22*x^6)/(1-x^4)^4. This is the preceding g.f. rewritten.
a(n) = binomial(n+1,3)*gcd(n+2,4)/4, n >= 0. From the g.f., see a comment above on A107711. (End)
a(n) = (n*(n-1)*((n+1)*(4+2*(-1)^n + (1+(-1)^n)*(-1)^((2*n+3+(-1)^n)/4))))/48. - Luce ETIENNE, Jan 01 2015
Sum_{n>=2} 1/a(n) = 12 - 27*log(2)/2. - Amiram Eldar, Aug 12 2022

A274912 Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.

Original entry on oeis.org

0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 0

Views

Author

Omar E. Pol, Jul 11 2016

Keywords

Comments

In the square array we have that:
Antidiagonal sums give A168237.
Odd-indexed rows give A010673.
Even-indexed rows give A010684.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed antidiagonals give the initial terms of A010674.
Even-indexed antidiagonals give the initial terms of A000034.
Main diagonal gives A010674.
This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
In the triangle we have that:
Row sums give A168237.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed diagonals give A010673.
Even-indexed diagonals give A010684.
Odd-indexed rows give the initial terms of A010674.
Even-indexed rows give the initial terms of A000034.
Odd-indexed antidiagonals give the initial terms of A010673.
Even-indexed antidiagonals give the initial terms of A010684.

Examples

			The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
		

Crossrefs

Programs

  • Maple
    ListTools:-Flatten([seq([[0,3]$i,0,[1,2]$(i+1)],i=0..10)]); # Robert Israel, Nov 14 2016
  • Mathematica
    Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)

Formula

a(n) = A274913(n) - 1.
From Robert Israel, Nov 14 2016: (Start)
G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)
Previous Showing 51-60 of 142 results. Next