cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 142 results. Next

A364447 Repeat [1,2,1,3].

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 3, 1
Offset: 1

Views

Author

Rok Cestnik, Jul 25 2023

Keywords

Comments

Continued fraction of sqrt(5) - 3/2 = 0.7360679... (without integer part); and (4*sqrt(5) + 6)/11 = 1.3585701... (with integer part).
Lexicographically earliest sequence in which n is banned for n terms after each appearance (see A364448 for n^2 and A364449 for n^3).

Crossrefs

Cf. A131743 (repeat [0,1,0,2]).

Programs

  • Mathematica
    PadRight[{}, 100, {1, 2, 1, 3}] (* Paolo Xausa, Jan 23 2025 *)
  • Python
    def A364447(n): return (3,1,2,1)[n&3] # Chai Wah Wu, Jul 29 2023

Formula

a(n) = A131743(n-1) + 1.

A385042 The number of unitary divisors of n whose exponents in their prime factorizations are all powers of 2 (A138302).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 1, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 2, 2, 4, 1, 4, 2, 8, 2, 1, 4, 4, 4, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 2, 4, 2, 4, 4, 2, 8, 2, 4, 4, 1, 4, 8, 2, 4, 4, 8, 2, 2, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

First differs from A367515 at n = 128.
The sum of these divisors is A385043(n), and the largest of them is A367168(n).

Crossrefs

The unitary analog of A353898.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), this sequence (exponentially 2^n), A385044 (5-rough).

Programs

  • Mathematica
    f[p_, e_] := Boole[e == 2^IntegerExponent[e, 2]] + 1; a[ 1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> (x == 1<
    				

Formula

Multiplicative with a(p^e) = A209229(e) + 1.
a(n) <= A034444(n), with equality if and only if n is in A138302.
a(n) <= A353898(n), with equality if and only if n is squarefree (A005117).

A385044 The number of unitary divisors of n that are 5-rough numbers (A007310).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 4, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 2, 2, 2, 2, 1, 4, 2, 2, 2, 2, 4, 2, 1, 2, 2, 2, 2, 4, 2, 2, 2, 1, 2, 2, 2, 4, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The sum of these divisors is A385045(n), and the largest of them is A065330(n).

Crossrefs

The unitary analog of A035218.
The number of unitary divisors of n that are: A000034 (power of 2), A055076 (exponentially odd), A056624 (square), A056671 (squarefree), A068068 (odd), A323308 (powerful), A365498 (cubefree), A365499 (biquadratefree), A368248 (cubefull), A380395 (cube), A382488 (3-smooth), A385042 (exponentially 2^n), this sequence (5-rough).

Programs

  • Mathematica
    f[p_, e_] := If[p <= 3, 1, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecprod(apply(x -> if(x <= 3, 1, 2), factor(n)[, 1]));

Formula

Multiplicative with a(p^e) = 1 if p <= 3, and 2 if p >= 5.
a(n) = A034444(n)/A382488(n).
a(n) <= A034444(n), with equality if and only if n is 5-rough.
a(n) <= A035218(n).
Dirichlet g.f.: (zeta(s)^2/zeta(2*s)) * (1/((1+1/2^s)*(1+1/3^s))).
Sum_{k=1..n} a(k) ~ (n / (2 * zeta(2))) *(log(n) + 2*gamma - 1 + log(2)/3 + log(3)/4 - 2*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620).

A007687 Number of 4-colorings of cyclic group of order n.

Original entry on oeis.org

3, 10, 21, 44, 83, 218, 271, 692, 865, 2622, 2813, 9220, 9735, 35214, 35911, 135564, 136899, 533290, 535081
Offset: 1

Views

Author

Keywords

Comments

The number of 2-colorings of Z_n is A000034(n-1), the number of 3-colorings of Z_n is A005843(n). The number of n-colorings of Z_2 is A137928(n-1). - Andrey Zabolotskiy, Oct 02 2017

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A007688.

Programs

  • Python
    from itertools import product
    def colorings(n, zp):
        result = 0
        for f in product(range(n), repeat=zp):
            for j1 in range(zp):
                for j2 in range(zp):
                    if (f[j1]+f[j2])%n == f[(j1+j2)%zp]:
                        break
                else:
                    continue
                break
            else:
                result += 1
        return result
    print([colorings(4, k) for k in range(1, 12)])
    # Andrey Zabolotskiy, Jul 12 2017

Extensions

a(6)-a(11) from Andrey Zabolotskiy, Jul 12 2017
a(12)-a(17) from Andrey Zabolotskiy, Oct 02 2017
a(18)-a(19) from Lucas A. Brown, Sep 20 2024

A010713 Period 2: repeat (4,8).

Original entry on oeis.org

4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4, 8, 4
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A176218.

Programs

Formula

a(n) = -2*(-1)^n + 6. - Paolo P. Lava, Oct 20 2006
From R. J. Mathar, Oct 20 2008: (Start)
a(n) = 4*A000034(n).
G.f.: 4(1+2x)/((1-x)(1+x)). (End)

A062113 a(0)=1; a(1)=2; a(n) = a(n-1) + a(n-2)*(3 - (-1)^n)/2.

Original entry on oeis.org

1, 2, 3, 7, 10, 24, 34, 82, 116, 280, 396, 956, 1352, 3264, 4616, 11144, 15760, 38048, 53808, 129904, 183712, 443520, 627232, 1514272, 2141504, 5170048, 7311552, 17651648, 24963200, 60266496, 85229696, 205762688, 290992384, 702517760
Offset: 0

Views

Author

Olivier Gérard, Jun 05 2001

Keywords

Comments

A bistable recurrence.

Crossrefs

Programs

  • Haskell
    a062113 n = a062113_list !! n
    a062113_list = 1 : 2 : zipWith (+)
       (tail a062113_list) (zipWith (*) a000034_list a062113_list)
    -- Reinhard Zumkeller, Jan 21 2012
    
  • Magma
    I:=[1,2,3,7]; [n le 4 select I[n] else 4*Self(n-2) - 2*Self(n-4): n in [1..40]]; // G. C. Greubel, Oct 16 2018
  • Mathematica
    LinearRecurrence[{0,4,0,-2}, {1,2,3,7}, 40] (* G. C. Greubel, Oct 16 2018 *)
  • PARI
    { for (n=0, 200, if (n>1, a=a1 + a2*(3 - (-1)^n)/2; a2=a1; a1=a, if (n==0, a=a2=1, a=a1=2)); write("b062113.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009
    
  • PARI
    x='x+O('x^40); Vec((1+2*x-x^2-x^3)/(1-4*x^2+2*x^4)) \\ G. C. Greubel, Oct 16 2018
    

Formula

a(n) = a(n-1) + a(n-2) * A000034(n). - Reinhard Zumkeller, Jan 21 2012
From Colin Barker, Apr 20 2012: (Start)
a(n) = 4*a(n-2) - 2*a(n-4).
G.f.: (1+2*x-x^2-x^3)/(1-4*x^2+2*x^4). (End)

A089499 a(0)=0; a(1)=1; a(2n) = 4*Sum_{k=0..n} a(2k-1); a(2n+1) = a(2n) + a(2n-1).

Original entry on oeis.org

0, 1, 4, 5, 24, 29, 140, 169, 816, 985, 4756, 5741, 27720, 33461, 161564, 195025, 941664, 1136689, 5488420, 6625109, 31988856, 38613965, 186444716, 225058681, 1086679440, 1311738121, 6333631924, 7645370045, 36915112104, 44560482149
Offset: 0

Views

Author

Charlie Marion, Nov 11 2003

Keywords

Comments

1, 4, 5, 24, 29, 140, ...= numerators in convergents to (sqrt(8) - 2) = continued fraction [0; 1, 4, 1, 4, 1, 4, ...]; where sqrt(8) - 2 = 0.828427124... = the inradius of a right triangle with hypotenuse 6, legs sqrt(32) and 2. Denominators of convergents to [0; 1, 4, 1, 4, 1, 4, ...] = A041011 starting (1, 5, 6, 29, 35, ...). - Gary W. Adamson, Dec 22 2007
This is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. - Peter Bala, May 12 2014

Crossrefs

Cf. A041011.

Programs

Formula

For n > 0, a(n) = A001333(n) + A084068(n-1)*(-1)^n.
a(n)*a(n+1) = A046729(n).
a(2n+1) = A001653(n); a(2n) = A005319(n).
a(1) = 1, a(2n) = 4*a(2n-1) + a(2n-2); a(2n-1) = a(2n-2) + a(2n-3). Given the 2 X 2 matrix X = [1, 4; 1, 5], [a(2n-1), a(2n)] = top row of X^n. The sequence starting (1, 4, 5, 24, 29, ...) = numerators in continued fraction [0; 1, 4, 1, 4, 1, 4, ...] = (sqrt(8) - 2) = 0.828427124... E.g., X^3 = [29, 140; 35, 169], where 29/35, 140/169 are convergents to (sqrt(8)-2). - Gary W. Adamson, Dec 22 2007
From R. J. Mathar, Jul 08 2009: (Start)
a(n) = A000129(n)*A000034(n+1).
a(n) = 6*a(n-2) - a(n-4).
G.f.: -x*(-1-4*x+x^2)/((x^2-2*x-1)*(x^2+2*x-1)). (End)
From Peter Bala, May 12 2014: (Start)
a(2*n + 1) = A041011(2*n + 1); a(2*n) = 4*A041011(2*n).
For n odd, a(n) = (alpha^n - beta^n)/(alpha - beta), and for n even, a(n) = 4*(alpha^n - beta^n)/(alpha^2 - beta^2), where alpha = 1 + sqrt(2) and beta = 1 - sqrt(2).
a(n) = Product_{j = 1..floor(n/2)} ( 4 + 4*cos^2(j*Pi/n) ) for n >= 1. (End)

Extensions

Corrected by T. D. Noe, Nov 08 2006
Definition corrected by Jonathan Sondow, Jun 06 2014

A106524 Interleave A038573(n+1) and 2*A038573(n+1).

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 1, 2, 3, 6, 3, 6, 7, 14, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 3, 6, 7, 14, 7, 14, 15, 30, 7, 14, 15, 30, 15, 30, 31, 62, 1, 2, 3, 6, 3, 6, 7, 14, 3, 6, 7, 14, 7, 14, 15, 30, 3, 6, 7, 14, 7, 14, 15, 30, 7, 14, 15
Offset: 0

Views

Author

Paul Barry, May 06 2005

Keywords

Comments

Row sums of number the number triangle (A106522 mod 2).

Crossrefs

Programs

  • Magma
    A106524:= func< n | 2^Multiplicity(Intseq(n+2, 2), 1) - 2^(n mod 2) >;
    [A106524(n): n in [0..100]]; // G. C. Greubel, Aug 12 2021
    
  • Mathematica
    a[n_]:= (2^DigitCount[Floor[(n+2)/2], 2, 1] - 1)*(3 - (-1)^n)/2;
    Table[a[n], {n, 0, 100}] (* G. C. Greubel, Aug 11 2021 *)
  • PARI
    a(n) = bitneg(n%2, hammingweight(n+2)); \\ Kevin Ryde, Aug 25 2021
  • Sage
    def A000120(n): return sum(n.digits(2))
    def A106524(n): return 2^A000120(n+2) - 2^(n%2)
    [A106524(n) for n in (0..100)] # G. C. Greubel, Aug 11 2021
    

Formula

a(n) = (Sum_{k=0..n+2} binomial(n+2, k)) mod 2 - (3 - (-1)^n)/2.
a(n) = ( (Sum_{k=0..(n/2+1)} binomial(n/2+1, k)) mod 2 - 1 )*(1 + (-1)^n)/2 + ( (Sum_{k=0..(n+1)/2} binomial((n+1)/2, k)) mod 2 - 1)*(1 - (-1)^n)/2.
a(n) = A001316(n+2) - A000034(n).

A124038 Triangle read by rows: T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.

Original entry on oeis.org

1, -2, 1, -1, -2, 1, 2, -2, -2, 1, 1, 4, -3, -2, 1, -2, 3, 6, -4, -2, 1, -1, -6, 6, 8, -5, -2, 1, 2, -4, -12, 10, 10, -6, -2, 1, 1, 8, -10, -20, 15, 12, -7, -2, 1, -2, 5, 20, -20, -30, 21, 14, -8, -2, 1, -1, -10, 15, 40, -35, -42, 28, 16, -9, -2, 1
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Nov 03 2006

Keywords

Examples

			Triangular sequence begins as:
   1;
  -2,   1;
  -1,  -2,   1;
   2,  -2,  -2,   1;
   1,   4,  -3,  -2,   1;
  -2,   3,   6,  -4,  -2,   1;
  -1,  -6,   6,   8,  -5,  -2,  1;
   2,  -4, -12,  10,  10,  -6, -2,  1;
   1,   8, -10, -20,  15,  12, -7, -2,  1;
  -2,   5,  20, -20, -30,  21, 14, -8, -2,  1;
  -1, -10,  15,  40, -35, -42, 28, 16, -9, -2, 1;
		

Crossrefs

Row reversal of: A374439.
Columns are related to: A000034 (k=0), A029578 (k=1), A131259 (k=2).
Diagonals are related to: A113679 (k=n-1), A022958 (k=n-2), A005843 (k=n-3), A000217 (k=n-4), -A002378 (k=n-5).
Sums include: (-1)^floor((n+1)/2)*A016116 (signed diagonal), A057079 (row), A119910 (signed row), (-1)^n*A130706 (diagonal).

Programs

  • Magma
    function T(n,k) // T = A124038
      if k lt 0 or k gt n then return 0;
      elif k ge n-2 then return k-n + (-1)^(n+k);
      else return T(n-1,k-1) - T(n-2,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 22 2025
  • Mathematica
    (* First program *)
    t[n_, m_, d_]:= If[n==m && n>1 && m>1, x, If[n==m-1 || n==m+1, -1, If[n==m== 1, x-2, 0]]];
    M[d_]:= Table[t[n,m,d], {n,d}, {m,d}];
    Join[{{1}}, Table[CoefficientList[Table[Det[M[d]], {d,10}][[d]], x], {d,10}]]//Flatten
    (* Second program *)
    T[n_, k_]:= T[n, k] = If[k<0 || k>n, 0, If[k>n-2, k-n+(-1)^(n-k), T[n-1, k- 1] -T[n-2,k]]];
    Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 22 2025 *)
  • SageMath
    @CachedFunction
    def A124038(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 2*A124038(n-1,k) if n==1 else 0
        return A124038(n-1,k-1) - A124038(n-2,k) - h
    for n in (0..9): [A124038(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    
  • SageMath
    from sage.combinat.q_analogues import q_stirling_number2
    def A124038(n,k): return (1 + ((n-k)%2))*q_stirling_number2(n+1, n-k+1, -1)
    print(flatten([[A124038(n, k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, Jan 22 2025
    

Formula

From G. C. Greubel, Jan 22 2025: (Start)
T(n, k) = T(n-1, k-1) - T(n-2, k), with T(n, n) = 1, T(n, n-1) = -2.
T(n, k) = (-1)^floor((n-k+1)/2)*(1 + (n-k mod 2))*qStirling2(n+1, n-k+1,-1).
T(2*n, n) = (1/2)*(-1)^floor(n/2)*( (1+(-1)^n)*A005809(n/2) - 2*(1-(-1)^n)* A045721((n-1)/2) ). (End)

Extensions

Edited by G. C. Greubel, Jan 22 2025

A128316 Triangle read by rows: A000012 * A128315 as infinite lower triangular matrices.

Original entry on oeis.org

1, 1, 1, 3, -1, 1, 2, 3, -2, 1, 4, -1, 4, -3, 1, 4, 3, -5, 7, -4, 1, 6, -3, 10, -13, 11, -5, 1, 4, 8, -14, 23, -24, 16, -6, 1, 7, -2, 15, -33, 46, -40, 22, -7, 1, 7, 4, -15, 47, -79, 86, -62, 29, -8, 1, 9, -6, 30, -73, 131, -166, 148, -91, 37, -9, 1, 7, 12, -37, 103, -204, 297, -314, 239, -128, 46, -10, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 25 2007

Keywords

Comments

A128316 * [1,2,3...] = A000034: [1,2,1,2,...].

Examples

			First few rows of the triangle:
  1;
  1,  1;
  3, -1,   1;
  2,  3   -2,   1;
  4, -1,   4,  -3,   1;
  4,  3,  -5,   7,  -4,  1;
  6, -3,  10, -13,  11, -5,  1;
  4,  8, -14,  23, -24, 16, -6, 1;
  ...
		

Crossrefs

Sums include: A000027 (row), A032766, A047215, A344817 (alternating sign).

Programs

  • Magma
    A128316:= func< n,k | (&+[(-1)^(j+k)*Floor(n/j)*Binomial(j-1,k-1): j in [k..n]]) >;
    [A128316(n,k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jun 23 2024
    
  • Mathematica
    T[n_, k_]:= Sum[(-1)^(j+k)*Floor[n/j]*Binomial[j-1,k-1], {j,k,n}];
    Table[T[n,k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Jun 23 2024 *)
  • SageMath
    def A128316(n,k): return sum((-1)^(j+k)*int(n//j)*binomial(j-1,k-1) for j in range(k,n+1))
    flatten([[A128316(n,k) for k in range(1,n+1)] for n in range(1,16)]) # G. C. Greubel, Jun 23 2024

Formula

Sum_{k=1..n} T(n, k) = A000027(n) (row sums).
T(n, 1) = A059851(n).
From G. C. Greubel, Jun 23 2024: (Start)
T(n, k) = A010766(n,k) * AA130595(n-1, k-1) as infinite lower triangular matrices.
T(n, k) = Sum_{j=k..n} (-1)^(j+k) * floor(n/j) * binomial(j-1, k-1).
T(2*n-1, n) = (-1)^(n-1)*A026641(n).
T(2*n-2, n-1) = (-1)^n*A014300(n-1), for n >= 2.
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A344817(n).
Sum_{k=1..n} k*T(n, k) = A032766(n-1).
Sum_{k=1..n} (k+1)*T(n, k) = A047215(n). (End)

Extensions

a(28) = 1 inserted and more terms from Georg Fischer, Jun 06 2023
Previous Showing 91-100 of 142 results. Next