cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 3902 results. Next

A221531 Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 6, 5, 4, 2, 6, 6, 10, 7, 2, 4, 4, 9, 10, 14, 11, 4, 2, 8, 6, 15, 14, 22, 15, 3, 4, 4, 12, 10, 21, 22, 30, 22, 4, 3, 8, 6, 20, 14, 33, 30, 44, 30, 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42, 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Examples

			For n = 6:
-------------------------
k   A000041        T(6,k)
1      1  *  4   =    4
2      1  *  2   =    2
3      2  *  3   =    6
4      3  *  2   =    6
5      5  *  2   =   10
6      7  *  1   =    7
.         A000005
-------------------------
So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
.
Triangle begins:
1;
2,  1;
2,  2,  2;
3,  2,  4,  3;
2,  3,  4,  6, 5;
4,  2,  6,  6, 10, 7;
2,  4,  4,  9, 10, 14, 11;
4,  2,  8,  6, 15, 14, 22, 15;
3,  4,  4, 12, 10, 21, 22, 30, 22;
4,  3,  8,  6, 20, 14, 33, 30, 44, 30;
2,  4,  6, 12, 10, 28, 22, 45, 44, 60, 42;
6,  2,  8,  9, 20, 14, 44, 30, 66, 60, 84, 56;
...
		

Crossrefs

Mirror of A221530. Columns 1-3: A000005, A000005, A062011. Leading diagonals 1-2: A000041, A139582. Row sums give A006128.

Formula

T(n,k) = d(n-k+1)*p(k-1), n>=1, k>=1.

A233307 a(n) = |{0 < k < n: p(k)^2 + q(n-k)^2 is prime}|, where p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).

Original entry on oeis.org

0, 1, 2, 2, 1, 1, 4, 2, 3, 2, 2, 4, 4, 3, 2, 2, 5, 3, 1, 5, 3, 5, 6, 3, 3, 2, 2, 1, 1, 2, 2, 5, 3, 4, 3, 5, 3, 1, 6, 4, 7, 10, 3, 5, 4, 2, 4, 5, 3, 4, 2, 3, 7, 9, 5, 6, 8, 2, 5, 3, 3, 5, 4, 3, 5, 4, 6, 7, 6, 3, 2, 9, 8, 6, 1, 6, 7, 7, 6, 2, 5, 8, 4, 6, 2, 6, 4, 8, 7, 3, 5, 3, 3, 5, 4, 5, 8, 5, 6, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 07 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 1. Also, for any integer n > 4, p(k)*q(n-k) - 1 is prime for some 0 < k < n/2.
(ii) If n > 9, then prime(k)*p(n-k) + 1 is prime for some 0 < k < n. If n > 2, then prime(k)*q(n-k) - 1 is prime for some 0 < k < n, and also prime(k)*q(n-k) + 1 is prime for some 0 < k < n.
(iii) If n > 11, then prime(k) + p(n-k) is prime for some 0 < k < n. If n > 4, then prime(k) + q(n-k) is prime for some 0 < k < n, and also prime(k)^2 + q(n-k)^2 is prime for some 0 < k < n.

Examples

			a(5) = 1 since 5 = 1 + 4 with p(1)^2 + q(4)^2 = 1^2 + 2^2 = 5 prime.
a(6) = 1 since 6 = 3 + 3 with p(3)^2 + q(3)^2 = 3^2 + 2^2 = 13 prime.
a(19) = 1 since 19 = 3 + 16 with p(3)^2 + q(16)^2 = 3^2 + 32^2 = 1033 prime.
a(28) = 1 since 28 = 3 + 25 with p(3)^2 + q(25)^2 = 3^2 + 142^2 = 20173 prime.
a(29) = 1 since 29 = 6 + 23 with p(6)^2 + q(23)^2 = 11^2 + 104^2 = 10937 prime.
a(38) = 1 since 38 = 1 + 37 with p(1)^2 + q(37)^2 = 1^2 + 760^2 = 577601 prime.
a(75) = 1 since 75 = 13 + 62 with p(13)^2 + q(62)^2 = 101^2 + 13394^2 = 179409437 prime.
a(160) = 1 since 160 = 48 + 112 with p(48)^2 + q(112)^2 = 147273^2 + 1177438^2 = 1408049580373 prime.
a(210) = 1 since 210 = 71 + 139 with p(71)^2 + q(139)^2 = 4697205^2 + 8953856^2 = 102235272080761 prime.
		

Crossrefs

Programs

  • Mathematica
    a[n_]:=Sum[If[PrimeQ[PartitionsP[k]^2+PartitionsQ[n-k]^2],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A357977 Replace prime(k) with prime(A000041(k)) in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 11, 8, 9, 10, 17, 12, 31, 22, 15, 16, 47, 18, 79, 20, 33, 34, 113, 24, 25, 62, 27, 44, 181, 30, 263, 32, 51, 94, 55, 36, 389, 158, 93, 40, 547, 66, 761, 68, 45, 226, 1049, 48, 121, 50, 141, 124, 1453, 54, 85, 88, 237, 362, 1951, 60, 2659, 526
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2022

Keywords

Comments

In the definition, taking A000041(k) instead of prime(A000041(k)) gives A299200.

Examples

			We have 35 = prime(3) * prime(4), so a(35) = prime(A000041(3)) * prime(A000041(4)) = prime(3) * prime(5) = 55.
		

Crossrefs

Applying the same transformation again gives A357979.
The strict version is A357978.
Other multiplicative sequences: A003961, A357852, A064988, A064989, A357980.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mtf[f_][n_]:=Product[If[f[i]==0,1,Prime[f[i]]],{i,primeMS[n]}];
    Array[mtf[PartitionsP],100]
  • PARI
    a(n) = my(f=factor(n)); for (k=1, #f~, f[k,1] = prime(numbpart(primepi(f[k,1])))); factorback(f); \\ Michel Marcus, Oct 25 2022

A058892 E.g.f.: exp(f(x)-1), where f(x) = o.g.f. for partitions (A000041), Product_{k>=1} 1/(1-x^k).

Original entry on oeis.org

1, 1, 5, 31, 265, 2621, 31621, 426595, 6574961, 111673945, 2092318021, 42552808871, 937495160185, 22150499622421, 559765402811525, 15039597200385451, 428293292251548001, 12875707199330296625, 407547173842501629061
Offset: 0

Views

Author

N. J. A. Sloane, Jan 08 2001

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1/E*Exp[Product[1/(1 - x^k), {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!(* Vaclav Kotesovec, Aug 19 2015 *)
  • PARI
    N=66; q='q+O('q^N);
    f=exp( 1/prod(n=1,N, 1-q^n ) - 1 );
    egf=serlaplace(f);
    Vec(egf)
    /* Joerg Arndt, Oct 06 2012 */

Formula

a(0) = 1 and a(n) = (n-1)! * Sum_{k=1..n} k*A000041(k)*a(n-k)/(n-k)! for n > 0. - Seiichi Manyama, Oct 15 2017

A234567 Number of ways to write n = k + m with k > 0 and m > 0 such that p = phi(k) + phi(m)/2 + 1 and P(p-1) are both prime, where phi(.) is Euler's totient function and P(.) is the partition function (A000041).

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 1, 3, 2, 2, 3, 2, 4, 2, 4, 4, 2, 4, 3, 5, 1, 3, 2, 3, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 2, 0, 1, 2, 1, 1, 2, 1, 2, 3, 2, 8, 2, 1, 2, 2, 3, 3, 1, 2, 7, 0, 2, 3, 3, 4, 5, 7, 3, 4, 1, 9, 1, 4, 3, 1, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 28 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 727.
(ii) For the strict partition function q(.) (cf. A000009), any n > 93 can be written as k + m with k > 0 and m > 0 such that p = phi(k) + phi(m)/2 + 1 and q(p-1) - 1 are both prime.
(iii) If n > 75 is not equal to 391, then n can be written as k + m with k > 0 and m > 0 such that f(k,m) - 1, f(k,m) + 1 and q(f(k,m)) + 1 are all prime, where f(k,m) = phi(k) + phi(m)/2.
Part (i) of the conjecture implies that there are infinitely many primes p with P(p-1) prime.

Examples

			a(21) = 1 since 21 = 6 + 15 with  phi(6) + phi(15)/2 + 1 = 7 and P(6) = 11 both prime.
a(700) = 1 since 700 = 247 + 453 with phi(247) + phi(453)/2 + 1 = 367 and P(366) = 790738119649411319 both prime.
a(945) = 1 since 945 = 687 + 258 with phi(687) + phi(258)/2 + 1 = 499 and P(498) = 2058791472042884901563 both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2
    q[n_,k_]:=PrimeQ[f[n,k]+1]&&PrimeQ[PartitionsP[f[n,k]]]
    a[n_]:=Sum[If[q[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A282919 a(n) = A000041(49*n + 47).

Original entry on oeis.org

124754, 118114304, 24908858009, 2366022741845, 133978259344888, 5234371069753672, 154043597379576030, 3617712763867604423, 70593393646562135510, 1178875491155735802646, 17229817230617210720599, 224282898599046831034631, 2636785814481962651219075
Offset: 0

Views

Author

Seiichi Manyama, Feb 24 2017

Keywords

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, See p. 179.

Crossrefs

Cf. A000041, A213261 (p(7*n + 5)), A277958, A278559 (p(25*n + 24)), this sequence (p(49*n + 47)).

Programs

  • Mathematica
    Table[PartitionsP[49n+47],{n,0,12}] (* Indranil Ghosh, Feb 25 2017 *)
  • PARI
    a(n) = numbpart(49*n+47); \\ Indranil Ghosh, Feb 25 2017

Formula

a(n) = A213261(7*n + 6) = A000041(49*n + 47).
a(n) = 2546 * 7^2 * A160528(n) + 48934 * 7^4 * A282920(n-1) + 1418989 * 7^5 * A282921(n-2) + 2488800 * 7^7 * A282922(n-3) + 2394438 * 7^9 * A282923(n-4) + 1437047 * 7^11 * A282924(n-5) + 4043313 * 7^12 * A282925(n-6) + 161744 * 7^15 * A282926(n-7) + 32136 * 7^17 * A282927(n-8) + 31734 * 7^18 * A282928(n-9) + 3120 * 7^20 * A282929(n-10) + 204 * 7^22 * A282930(n-11) + 8 * 7^24 * A282931(n-12) + 7^25 * A282932(n-13) for n >= 13.

A340061 Irregular triangle read by rows T(n,k) in which row n lists n blocks, where the m-th block consists of A000041(n-m) copies of m, with n >= 1 and m >= 1.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 2, 3, 4, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 6, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Dec 28 2020

Keywords

Comments

Conjecture: all divisors of all terms of row n are also all parts of all partitions of n.
The conjecture gives a correspondence between divisors and partitions (see example).
It is conjectured that every section of the set of partitions of n has essentially the same correspondence. For more information see A336811.

Examples

			Triangle begins:
  1;
  1, 2;
  1, 1, 2, 3;
  1, 1, 1, 2, 2, 3, 4;
  1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 4, 5;
  1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6;
  1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, ...
  ...
For n = 6 the 6th row of the triangle consists of:
  p(5) = 7 copies of 1, that is, [1, 1, 1, 1, 1, 1, 1],
  p(4) = 5 copies of 2, that is, [2, 2, 2, 2, 2],
  p(3) = 3 copies of 3, that is, [3, 3, 3],
  p(2) = 2 copies of 4, that is, [4, 4],
  p(1) = 1 copy   of 5, that is, [5],
  p(0) = 1 copy   of 6, that is, [6],
where p(j) is the j-th partition number A000041(j).
About the conjecture we have that the divisors of the terms of the 6th row are:
                                                                     1
                                                            1, 1,    2
                                    1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 3
  6th row -->  1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5, 6
There are nineteen 1's, eight 2's, four 3's, two 4's, one 5 and one 6.
In total there are 19 + 8 + 4 + 2 + 1 + 1 = 35 divisors.
On the other hand the partitions of 6 are:
      Diagram          Parts
    _ _ _ _ _ _
   |_ _ _      |       6
   |_ _ _|_    |       3 3
   |_ _    |   |       4 2
   |_ _|_ _|_  |       2 2 2
   |_ _ _    | |       5 1
   |_ _ _|_  | |       3 2 1
   |_ _    | | |       4 1 1
   |_ _|_  | | |       2 2 1 1
   |_ _  | | | |       3 1 1 1
   |_  | | | | |       2 1 1 1 1
   |_|_|_|_|_|_|       1 1 1 1 1 1
There are nineteen 1's, eight 2's, four 3's, two 4's, one 5 and one 6, as shown also the 6th row of A066633.
In total there are 19 + 8 + 4 + 2 + 1 + 1 = A006128(6) = 35 parts.
In accordance with the conjecture we can see that all divisors of all terms of the 6th row of triangle are the same positive integers as all parts of all partitions of 6.
		

Crossrefs

Mirror of A176206.
Row sums give A014153.
Row n has length A000070(n-1).
Right border gives A000027.

Programs

  • Mathematica
    A340061row[n_]:=Flatten[Table[ConstantArray[m,PartitionsP[n-m]],{m,n}]];Array[A340061row,10] (* Paolo Xausa, Sep 01 2023 *)

A111785 T(n,k) are coefficients used for power series inversion (sometimes called reversion), n >= 0, k = 1..A000041(n), read by rows.

Original entry on oeis.org

1, -1, -1, 2, -1, 5, -5, -1, 6, 3, -21, 14, -1, 7, 7, -28, -28, 84, -42, -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132, -1, 9, 9, 9, -45, -90, -45, -45, 165, 495, 165, -495, -990, 1287, -429, -1, 10, 10, 10, 5, -55, -110, -110, -55, -55, 220, 660, 330, 660, 55, -715, -2860, -1430, 2002, 5005, -5005, 1430, -1, 11, 11
Offset: 0

Views

Author

Wolfdieter Lang, Aug 23 2005

Keywords

Comments

Coefficients are listed in Abramowitz and Stegun order (A036036).
The formula for the inversion of the power series y = F(x) = x*G(x) = x*(1 + Sum_{k>=1} g[k]*(x^k)) is obtained as a corollary of Lagrange's inversion theorem. The result is F^{(-1)}(y)= Sum_{n>=1} P(n-1)*y^n, where P(n):=sum over partitions of n of a(n,k)* G[k], with G[k]:=g[1]^e(k,1)*g[2]^e(k,2)*...*g[n]^e(k,n) if the k-th partition of n, in Abramowitz-Stegun order(see the given ref, pp. 831-2), is [1^e(k,1),2^e(k,2),...,n^e(k,n)], for k=1..p(n):= A000041(n) (partition numbers).
The sequence of row lengths is A000041(n) (partition numbers).
The signs are given by (-1)^m(n,k), with the number of parts m(n,k) = Sum_{j=1..n} e(k,j) of the k-th partition of n. For m(n,k) see A036043.
The proof that the unsigned row sums give Schroeder's little numbers A001003(n) results from their formula ((d^(n-1)/dx^(n-1)) ((1-x)/(1-2*x))^n)/n!|_{x=0}, n >= 1. This formula for A001003 can be proved starting with the compositional inverse of the g.f. of A001003 (which is given there in a comment) and using Lagrange's inversion theorem to recover the original sequence A001003.
For alternate formulations and relation to the geometry of associahedra or Stasheff polytopes (and other combinatorial objects) see A133437. [Tom Copeland, Sep 29 2008]
The coefficients of the row polynomials P(n) with monomials in lexicographically descending order e.g. P(6) = -1*g[6] + 8*g[5]*g[1] + 8*g[4]*g[2] - 36*g[4]*g[1]^2 + 4*g[3]^2 - 72*g[3]*g[2]*g[1] - 12*g[2]^3 + 120*g[3]*g[1]^3 + 180*g[2]^2*g[1]^2 - 330*g[2]*g[1]^4 + 132*g[1]^6 are given in A304462. [Herbert Eberle, Aug 16 2018]

Examples

			[ +1];
[ -1];
[ -1, 2];
[ -1, 5, -5];
[ -1, 6,  3, -21,  14];
[ -1, 7,  7, -28, -28, 84, -42];
[ -1, 8,  8,   4, -36, -72, -12, 120, 180, -330, 132];  ...
The seventh row, [ -1, 8, 8, 4, -36, -72, -12, 120, 180, -330, 132], stands for the row polynomial P(6) with monomials in lexicographically ascending order P(6) = -1*g[0]^5*g[6] + 8*g[0]^4*g[1]*g[5] + 8*g[0]^4*g[2]*g[4] + 4*g[0]^4*g[3]^2 - 36*g[0]^3*g[1]^2*g[4] - 72*g[0]^3*g[1]*g[2]*g[3] - 12*g[0]^3*g[2]^3 + 120*g[0]^2*g[1]^3*g[3] + 180*g[0]^2*g[1]^2*g[2]^2 - 330*g[0]*g[1]^4*g[2] + 132*g[1]^6 = (1/7!)*(differentiate 1/G(x)^7 six times and evaluate at x = 0). This gives the coefficient of y^7 of F^{(-1)}(y).
		

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 150, Table 4.1 (unsigned).

Crossrefs

Row sums give (-1)^n. Unsigned row sums are A001003(n) (little Schroeder numbers). Inversion triangle with leading quadratic term: A276738. Conjectured simplification: A283298.

Programs

  • Mathematica
    (* Graded Colex Ordering: by length, then reverse lexicographic by digit *)
    ClearAll[P, L, T, c, g]
    P[0] := 1
    P[n_] := -Total[
       Multinomial @@ # c[Total@# - 1] Times @@
           Power[g[#] & /@ Range[0, n - 1], #] & /@
        Table[ Count[p, i], {p, Drop[IntegerPartitions[n + 1], 1]}, {i,
          n}]]
    L[n_] := Join @@ GatherBy[IntegerPartitions[n], Length]
    T[1] := {1}
    T[n_] := Coefficient[ Do[g[i] = P[i], {i, 0, n - 1}];
        P[n - 1], #] & /@ (Times @@@ Map[c, L[n - 1], {2}])
    Array[T, 9] // Flatten (* Bradley Klee and Michael Somos, Apr 14 2017 *)
  • PARI
    sv(n)={eval(Str("'s",n))}
    Trm(q,v)={my(S=Set(v)); for(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); q=polcoef(q, c, sv(x))); q}
    Q(n)={polcoef(serreverse(x + x*sum(k=1, n, x^k*sv(k), O(x*x^n)))/x, n)}
    row(n)={my(q=Q(n)); [Trm(q,Vec(v)) | v<-partitions(n)]} \\ Andrew Howroyd, Feb 01 2022
    
  • PARI
    C(v)={my(n=vecsum(v), S=Set(v)); (-1)^#v*(n+#v)!/(n+1)!/prod(i=1, #S, my(x=S[i], c=#select(y->y==x, v)); c!)}
    row(n)=[C(Vec(p)) | p<-partitions(n)]
    { for(n=0, 7, print(row(n))) } \\ Andrew Howroyd, Feb 01 2022
  • Sage
    def A111785_list(dim): # returns the first dim rows
        C = [[0 for k in range(m+1)] for m in range(dim+1)]
        C[0][0] = 1; F = [1]; i = 1
        X = lambda n: 1 if n == 1 else var('x'+str(n))
        while i <= dim: F.append(F[i-1]*X(i)); i += 1
        for m in (1..dim):
            C[m][m] = -C[m-1][m-1]/F[1]
            for k in range(m-1, 0, -1):
                C[m][k] = -(C[m-1][k-1]+sum(F[i]*C[m][k+i-1] for i in (2..m-k+1)))/F[1]
        P = [expand((-1)^m*C[m][1]) for m in (1..dim)]
        R = PolynomialRing(ZZ, [X(i) for i in (2..dim)], order='lex')
        return [R(p).coefficients()[::-1] for p in P]
    A111785_list(8) # Peter Luschny, Apr 14 2017
    

Formula

For row n >= 1 the row polynomial in the variables g[1], ..., g[n] is P(n) = (1/(n+1)!)*(d^n/dx^n)(1/G(x)^(n+1))|{x=0}. P(0):=1. (d^k/dx^k)G(x)|{x=0} = k!*g[k], k>=1; G(0)=1.
a(n, k) is the coefficient in P(n) of g[1]^e(k, 1)*g[2]^e(k, 2)*..*g[n]^e(k, n) with the k-th partition of n written as [1^e(k, 1), 2^e(k, 2), ..., n^e(k, n)] in Abramowitz-Stegun order (e(k, j) >= 0; if e(k, j)=0 then j^0 is not recorded).
T(n,k) = (-1)^j*(n+j)!/((n+1)!*Product_{i>=1} s_i!), where (1*s_1 + 2*s_2 + ... = n) is the k-th partition of n and j = s_1 + s_2 ... is the number of parts. - Andrew Howroyd, Feb 01 2022

Extensions

Name edited by Andrew Howroyd, Feb 02 2022

A210258 The coefficients of the Girard-Waring formula; irregular array T(n,k), read by rows, for n >= 1 and 1 <= k <= A000041(n).

Original entry on oeis.org

1, 1, -2, 1, -3, 3, 1, -4, 4, 2, -4, 1, -5, 5, 5, -5, -5, 5, 1, -6, 6, 9, -6, -12, 6, -2, 6, 3, -6, 1, -7, 7, 14, -7, -21, 7, -7, 14, 7, -7, 7, -7, -7, 7, 1, -8, 8, 20, -8, -32, 8, -16, 24, 12, -8, 24, -16, -16, 8, 2, -8, -8, 8, 8, 8, -8, 1, -9, 9, 27, -9, -45
Offset: 1

Views

Author

Mircea Merca, Mar 19 2012

Keywords

Comments

Assume we have N <= n variables x_1, x_2, ..., x_N, and let S_n^{(N)} = x_1^n + x_2^n + ... + x_N^n be the n-th power sum of these variables. Following Gould (1999, p. 135), define the elementary symmetric polynomials e_1^{(N)}, e^2^{(N)}, ..., e_N^{(N)}, where e_j^{(N)} is the sum of all products of x_1, x_2, ..., x_N taken j at a time.
Since N <= n, without loss of generality, we may assume we have the extra variables x_{N+1}, ..., x_n, define e_1^{(n)}, e_2^{(n)}, ..., e_N^{(n)}, e_{N+1}^{(n)}, ..., e_n^{(n)}, and then set x_{N+1} = x_{N+2} = ... = x_n = 0. In such a case, we get e_j^{(N)} = e_j^{(n)} for j = 1..N, and e_j^{(n)} = 0 for j = (N+1)..n. Thus, we may drop the superscripts N and n on power sum and on the elementary symmetric polynomials and write S_n, and e_1, e_2, ..., e_n with the understanding that e_{N+1} = ... = e_n = 0. (See also the comments for A115131.)
The numbers T(n,k) are the coefficients of the power sum expansion in terms of the elementary symmetric polynomials, which is the Girard-Waring formula. That is, S_n = Sum(c(t_1,...,t_n) * e_1^t_1 * e_2^t_2 *...* e_n^t_n), summed over integer partitions of n, t_1 + 2*t_2 + ... + n*t_n = n with t_i >= 0 for i = 1..n. Here c(t_1,t_2,...,t_n) = n * (-1)^(t_2 + t_4 + ... + t_{2*floor(n/2)}) * (t_1 + ... + t_n - 1)!/(t_1!*...*t_n!).
Given a partition (t_1,...,t_n) of n (as defined above), we may use only those j's in {1,...,n} for which t_j > 0 and write the partition in the usual notation by repeating each such j t_j times (and place these j's in a non-descending order). E.g., the partition 1*3 + 2*1 + 3*0 + 4*0 + 5*0 of 5 can be written as [1,1,1,2]. Similarly, the partition 1*5 + 2*0 + 3*0 + 4*0 + 5*0 of 5 can be written as [1,1,1,1,1].
Instead of using the Abramowitz-Stegun order of partitions (as it is done in A115131), we use the usual notation for partitions (in terms of the positive integers that add up to n) and order them in lexicographic order. Unfortunately, this order of partitions does not correspond to any of the orders in the web link below.
If we let a(m) be the m-th term of the array, read as sequence, then
a(1) = T(1,1) = c([1]) = c(1),
a(2) = T(2,1) = c([1,1]) = c(2,0) with sign(T(2,1)) = (-1)^0 = 1,
a(3) = T(2,2) = c([2]) = c(0,1) with sign(T(2,2)) = (-1)^1 = -1,
a(4) = T(3,1) = c([1,1,1]) = c(3,0,0) with sign(T(3,1)) = (-1)^0 = 1,
a(5) = T(3,2) = c([1,2]) = c(1,1,0) with sign(T(4,1)) = (-1)^1 = -1,
a(6) = T(3,3) = c([3]) = c(0,0,1) with sign(T(3,3)) = (-1)^0 = 1,
a(7) = T(4,1) = c([1,1,1,1]) = c(4,0,0,0) with sign(T(4,1)) = (-1)^(0+0) = 1,
a(8) = T(4,2) = c([1,1,2]) = c(2,1,0,0) with sign(T(4,2)) = (-1)^(1+0) = -1,
a(9) = T(4,3) = c([1,3]) = c(1,0,1,0) with sign(T(4,3)) = (-1)^(0+0) = 1,
a(10) = T(4,4) = c([2,2]) = c(0,2,0,0) with sign(T(4,4)) = (-1)^(2+0) = 1,
a(11) = T(4,5) = c([4]) = c(0,0,0,1) with sign(T(4,5)) = (-1)^(0+1) = -1,
a(12) = T(5,1) = c([1,1,1,1,1]) = c(5,0,0,0,0),
a(13) = T(5,2) = c([1,1,1,2]) = c(3,1,0,0,0),
a(14) = T(5,3) = c([1,1,3]) = c(2,0,1,0,0),
a(15) = T(5,4) = c([1,2,2]) = c(1,2,0,0,0),
a(16) = T(5,5) = c([1,4]) = c(1,0,0,1,0),
a(17) = T(5,6) = c([2,3]) = c(0,1,1,0,0),
a(18) = T(5,7) = c([5]) = c(0,0,0,0,1), ...
(ascending ordered compositions in lexicographic order).

Examples

			Array T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
  S_1: 1;
  S_2: 1, -2;
  S_3: 1, -3, 3;
  S_4: 1, -4, 4,  2, -4;
  S_5: 1, -5, 5,  5, -5,  -5, 5;
  S_6: 1, -6, 6,  9, -6, -12, 6, -2,  6, 3, -6;
  S_7: 1, -7, 7, 14, -7, -21, 7, -7, 14, 7, -7, 7, -7, -7, 7;
  ...
With N = n = 6, we have S_6 = 1*(e_1)^6 - 6*(e_1)^4*(e_2) + 6*(e_1)^3*(e_3) + 9*(e_1)^2*(e_2)^2 - 6*(e_1)^2*(e_4) - 12*(e_1)*(e_2)*(e_3) + 6*(e_1)*(e_5) - 2*(e_2)^3 + 6*(e_2)*(e_4) + 3*(e_3)^2 - 6*(e_6) = Sum_{i = 1..6} x_i^6.
If N = 4 < n = 6, we set e_5 = e_6 = 0 in the above expression, and we get that S_6 = 1*(e_1)^6 - 6*(e_1)^4*(e_2) + 6*(e_1)^3*(e_3) + 9*(e_1)^2*(e_2)^2 - 6*(e_1)^2*(e_4) - 12*(e_1)*(e_2)*(e_3) - 2*(e_2)^3 + 6*(e_2)*(e_4) + 3*(e_3)^2 = Sum_{i = 1..4} x_i^6.
		

Crossrefs

Cf. A115131 (Abramowitz-Stegun order of partitions).

Extensions

Various sections edited by Petros Hadjicostas, Dec 14 2019

A339304 Irregular triangle read by rows T(n,k) in which row n has length the partition number A000041(n-1) and columns k give the number of divisors function A000005, 1 <= k <= n.

Original entry on oeis.org

1, 2, 2, 1, 3, 2, 1, 2, 2, 2, 1, 1, 4, 3, 2, 2, 2, 1, 1, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1, 4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 4, 4, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Nov 29 2020

Keywords

Comments

T(n,k) is also the number of divisors of A336811(n,k).
Conjecture: the sum of row n equals A138137(n), the total number of parts in the last section of the set of partitions of n.

Examples

			Triangle begins:
  1;
  2;
  2, 1;
  3, 2, 1;
  2, 2, 2, 1, 1;
  4, 3, 2, 2, 2, 1, 1;
  2, 2, 3, 2, 2, 2, 2, 1, 1, 1, 1;
  4, 4, 2, 3, 3, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1;
  3, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1;
  ...
		

Crossrefs

Number of divisors of A336811.
Row n has length A000041(n-1).
Every column gives A000005.
Row sums give A138137 (conjectured).

Programs

  • Mathematica
    A339304row[n_]:=Flatten[Table[ConstantArray[DivisorSigma[0,n-m],PartitionsP[m]-PartitionsP[m-1]],{m,0,n-1}]];Array[A339304row,10] (* Paolo Xausa, Sep 01 2023 *)

Formula

a(m) = A000005(A336811(m)).
T(n,k) = A000005(A336811(n,k)).
Previous Showing 41-50 of 3902 results. Next