A089074 Expansion of x*(1 + x + x^2)/(1 - 2*x + x^5).
0, 1, 3, 7, 14, 28, 55, 107, 207, 400, 772, 1489, 2871, 5535, 10670, 20568, 39647, 76423, 147311, 283952, 547336, 1055025, 2033627, 3919943, 7555934, 14564532, 28074039, 54114451, 104308959, 201061984, 387559436, 747044833, 1439975215
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,0,0,0,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 50); Coefficients(R!( x*(1+x+x^2)/(1-2*x+x^5) )); // G. C. Greubel, Feb 19 2021 -
Mathematica
CoefficientList[Series[x*(1+x+x^2)/(1-2*x+x^5), {x, 0, 50}], x] (* G. C. Greubel, Feb 19 2021 *)
-
Sage
def A089074_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+x+x^2)/(1-2*x+x^5) ).list() a=A089074_list(51); a[1:] # G. C. Greubel, Feb 19 2021
Formula
From N. J. A. Sloane, Dec 05 2003: (Start)
G.f.: x*(1+x+x^2)/(1-2*x+x^5).
a(n) = 2*a(n-1) - a(n-5) for n >= 6. (End)
a(n) = A000078(n+4) - 1. - G. C. Greubel, Feb 19 2021
Extensions
Title and offset changed by G. C. Greubel, Feb 19 2021
Comments