cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 109 results. Next

A162584 G.f.: A(x) = exp( 2*Sum_{n>=1} sigma(n)*A006519(n) * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 8, 16, 50, 96, 240, 448, 1024, 1858, 3888, 6896, 13696, 23776, 44960, 76608, 139970, 234432, 414904, 684336, 1181568, 1921472, 3242928, 5206208, 8623104, 13679490, 22268752, 34941120, 56039936, 87036576, 137686048, 211822976
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Comments

Log of the g.f. A(x) is formed from the term-wise product of the log of the g.f.s of the partition numbers A000041 and the binary partitions A000123.

Examples

			G.f.: A(x) = 1 + 2*x + 8*x^2 + 16*x^3 + 50*x^4 + 96*x^5 + 240*x^6 + ...
log(A(x))/2 = x + 6*x^2/2 + 4*x^3/3 + 28*x^4/4 + 6*x^5/5 + 24*x^6/6 + 8*x^7/7 + 120*x^8/8 + ... + sigma(n)*A006519(n)*x^n/n + ...
The log of the g.f. of the Partition numbers (A000041) is:
x + 3*x^2/2 + 4*x^3/3 + 7*x^4/4 + 6*x^5/5 + 12*x^6/6 + ... + sigma(n)*x^n/n + ...
The log of the g.f. of the binary partitions (A000123) is:
x + x^2/2 + x^3/3 + 4*x^4/4 + x^5/5 + 2*x^6/6 + x^7/7 + ... + A006519(n)*x^n/n + ...
From _Paul D. Hanna_, Jul 26 2009: (Start)
BISECTIONS begin:
B_0(q) = 1 + 8*q^2 + 50*q^4 + 240*q^6 + 1024*q^8 + 3888*q^10 + ...
B_1(q) = 2*q + 16*q^3 + 96*q^5 + 448*q^7 + 1858*q^9 + 6896*q^11 + ...
where 2*B_0(q)/B_1(q) = T16B(q):
T16B = 1/q + 2*q^3 - q^7 - 2*q^11 + 3*q^15 + 2*q^19 - 4*q^23 - 4*q^27 + ...
which is a g.f. of A029839. (End)
		

Crossrefs

Cf. A163228 (B_0), A163229 (B_1), A029839 (T16B); variant: A163129. - Paul D. Hanna, Jul 26 2009

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 250; a[n_]:=SeriesCoefficient[ Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q, 0, nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 03 2018 *)
    nmax = 40; CoefficientList[Series[Exp[Sum[DivisorSigma[1, k]*2^(IntegerExponent[k, 2] + 1)*x^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 20 2020 *)
    nmax = 40; CoefficientList[Series[Product[1/EllipticTheta[4, 0, x^(2^k)]^(2^k), {k, 0, 1 + Log[2, nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Feb 07 2023 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*sigma(m)*2^valuation(m,2)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

Formula

From Paul D. Hanna, Jul 26 2009: (Start)
Define series BISECTIONS A(q) = B_0(q) + B_1(q), then
2*B_0(q)/B_1(q) = T16B(q) = q*eta(q^8)^6/(eta(q^4)^2*eta(q^16)^4), the McKay-Thompson series of class 16B for the Monster group (A029839). (End)
G.f.: 1/Product_{n>=0} Theta4(q^(2^n))^(2^n) = 1 / ( E(1)^2*E(2)^3*E(4)^6*E(8)^12* ... * E(2^n)^A042950(n) * ... ) where E(n) = Product_{k>=1} (1-q^(n*k)). - Joerg Arndt, Mar 20 2010
Compare to the previous formula: 1/Product_{n>=0} Theta3(q^(2^n))^(2^n) = Theta4(q). - Joerg Arndt, Aug 03 2011

A174868 Partial sums of Stern's diatomic series A002487.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 10, 13, 14, 18, 21, 26, 28, 33, 36, 40, 41, 46, 50, 57, 60, 68, 73, 80, 82, 89, 94, 102, 105, 112, 116, 121, 122, 128, 133, 142, 146, 157, 164, 174, 177, 188, 196, 209, 214, 226, 233, 242, 244, 253, 260, 272, 277, 290, 298, 309, 312, 322, 329, 340, 344, 353, 358, 364, 365, 372, 378, 389, 394, 408, 417, 430, 434, 449, 460, 478, 485, 502, 512, 525, 528, 542, 553, 572, 580, 601, 614, 632, 637, 654, 666, 685
Offset: 0

Views

Author

Jonathan Vos Post, Dec 01 2010

Keywords

Comments

After the initial 0, identical to A007729.

Examples

			a(16) = 0 + 1 + 1 + 2 + 1 + 3 + 2 + 3 + 1 + 4 + 3 + 5 + 2 + 5 + 3 + 4 + 1 = 41.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = If[EvenQ[n], 2*a[n/2] + a[n/2 - 1], 2*a[(n - 1)/2] + a[(n + 1)/2]]; a[0] = 0; a[1] = 1; Array[a, 100, 0] (* Amiram Eldar, May 18 2023 *)
  • Python
    from itertools import accumulate, count, islice
    from functools import reduce
    def A174868_gen(): # generator of terms
        return accumulate((sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) for n in count(1)),initial=0)
    A174868_list = list(islice(A174868_gen(),30)) # Chai Wah Wu, May 07 2023

Formula

a(n) = Sum_{i=0..n} A002487(i).
G.f.: (x/(1 - x))*Product_{k>=0} (1 + x^(2^k) + x^(2^(k+1))). - Ilya Gutkovskiy, Feb 27 2017
a(2k) = 2*a(k) + a(k-1); a(2k+1) = 2*a(k) + a(k+1). - Michael J. Collins, Dec 25 2018
a(n) = n^log_2(3) + Psi_D(log_2(n)) + O(n^log_2(phi)), where phi is the golden ratio (A001622) and Psi_D is a 1-periodic continuous function which is Hölder continuous with any exponent smaller than log_2(3/phi) (Heuberger et al., 2022). - Amiram Eldar, May 18 2023

A277904 Irregular table: row n (n >= 0) is obtained by listing numbers 0 .. A018819(n)-1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19
Offset: 1

Views

Author

Antti Karttunen, Nov 14 2016

Keywords

Examples

			A018819 -> range -> terms on row n
  1        [0,0]:    0;
  1        [0,0]:    0;
  2        [0,1]:    0, 1;
  2        [0,1]:    0, 1;
  4        [0,3]:    0, 1, 2, 3;
  4        [0,3]:    0, 1, 2, 3;
  6        [0,5]:    0, 1, 2, 3, 4, 5;
etc.
		

Crossrefs

Used for constructing A277905.
Retaining only every second row gives A278164.

Programs

Formula

a(1) = 0; for n > 1, a(n) = n - A000123(A277903(n)-1) - 1.

A007728 5th binary partition function.

Original entry on oeis.org

1, 1, 2, 2, 4, 3, 5, 4, 8, 6, 9, 7, 12, 8, 12, 9, 17, 12, 18, 14, 23, 15, 22, 16, 28, 19, 27, 20, 32, 20, 29, 21, 38, 26, 38, 29, 47, 30, 44, 32, 55, 37, 52, 38, 60, 37, 53, 38, 66, 44, 63, 47, 74, 46, 66, 47, 79, 52, 72, 52, 81, 49, 70, 50, 88, 59, 85, 64
Offset: 0

Views

Author

Keywords

Comments

The number of ways of writing n as a sum of powers of 2, each power being used at most four times. - Dmitry Kamenetsky, Jul 14 2023

Crossrefs

A column of A072170.

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(n=0, 1, `if`(i<0, 0, add(`if`(n-j*2^i<0, 0,
             b(n-j*2^i, i-1)), j=0..4)))
        end:
    a:= n-> b(n, ilog2(n)):
    seq(a(n), n=0..70);  # Alois P. Heinz, Jun 21 2012
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 0, 0, Sum[If[n-j*2^i < 0, 0, b[n-j*2^i, i-1, k]], {j, 0, k-1}]]]; a[n_] := b[n, Log[2, n] // Floor, 5]; Table[a[n], {n, 0, 70} ] (* Jean-François Alcover, Jan 17 2014, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=0} (1 - x^(5*2^k))/(1 - x^(2^k)). - Ilya Gutkovskiy, Jul 09 2019

Extensions

More terms from Vladeta Jovovic, May 06 2004

A058039 a(n) = a(n-1) + 2*a(floor(n/2)) if n > 0, otherwise 1.

Original entry on oeis.org

1, 3, 9, 15, 33, 51, 81, 111, 177, 243, 345, 447, 609, 771, 993, 1215, 1569, 1923, 2409, 2895, 3585, 4275, 5169, 6063, 7281, 8499, 10041, 11583, 13569, 15555, 17985, 20415, 23553, 26691, 30537, 34383, 39201, 44019, 49809, 55599, 62769, 69939, 78489, 87039
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2002

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select 3^n else Self(n-1) + 2*Self(Floor(n/2)): n in [1..51]]; // G. C. Greubel, Feb 10 2021
  • Mathematica
    a[n_]:= a[n] = If[n==0, 1, a[n-1] + 2*a[Floor[n/2]]];
    Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 10 2021 *)
  • PARI
    a(n) = if (n==0, 1, a(n-1)+2*a(n\2)); \\ Michel Marcus, Feb 04 2021
    
  • Python
    def a(n): return 1 if n == 0 else a(n-1) + 2*a(n//2)
    print([a(n) for n in range(44)]) # Michael S. Branicky, Feb 04 2021
    

Formula

a(n) = 1 + 2 * Sum_{k=1..n} a(floor(k/2)). - Ilya Gutkovskiy, Aug 15 2021

Extensions

Name corrected by and more terms from Michael S. Branicky, Feb 04 2021

A067868 a(n) = a(n-1) + a(floor(n/2))^2 for n > 0, a(0) = 1.

Original entry on oeis.org

1, 2, 6, 10, 46, 82, 182, 282, 2398, 4514, 11238, 17962, 51086, 84210, 163734, 243258, 5993662, 11744066, 32120262, 52496458, 178789102, 305081746, 627715190, 950348634, 3560128030, 6169907426, 13261231526, 20352555626, 47161378382, 73970201138, 133144655702, 192319110266
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 16 2002

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [n le 2 select Factorial(n+1) else Self(n-1) + (Self(Floor(n/2)))^2: n in [1..51]]; // G. C. Greubel, Feb 10 2021
  • Mathematica
    a[n_]:= a[n] = If[n==0, 1, a[n-1] + (a[Floor[n/2]])^2];
    Table[a[n], {n, 0, 50}] (* G. C. Greubel, Feb 10 2021 *)
  • PARI
    a(n) = if (n==0, 1, a(n-1)+a(n\2)^2);
    
  • Sage
    def a(n): return 1 if n == 0 else a(n-1) + (a(n//2))^2
    [a(n) for n in range(50)] # G. C. Greubel, Feb 10 2021
    

Extensions

Corrected name and more terms from Michel Marcus, Feb 05 2021

A073469 Expansion of x/B(x) where B(x) is the g.f. for A002487.

Original entry on oeis.org

1, -1, -1, 2, -2, 0, 4, -4, -2, 6, -4, -2, 10, -8, -6, 14, -10, -4, 20, -16, -8, 24, -18, -6, 34, -28, -14, 42, -34, -8, 56, -48, -18, 66, -52, -14, 86, -72, -30, 102, -80, -22, 126, -104, -40, 144, -110, -34, 178, -144, -62, 206, -158, -48, 248, -200, -82, 282, -208, -74, 338, -264, -122, 386, -282, -104, 452, -348, -156, 504
Offset: 0

Views

Author

N. J. A. Sloane, Aug 26 2002

Keywords

Comments

a(n) is the Euler transform of a sequence b(n) = [-1,-1,1,-1,0,1,0,-1,0,0,0,1 ...] that has (for n > 0, k > 0) b(2^k-1) = -1, b(3*2^k-1) = 1, and b(n) = 0 otherwise. - Georg Fischer, Aug 24 2020

Programs

  • Mathematica
    terms = 70; A[x_] = 1/Product[1 + x^(2^k) + x^(2^(k + 1)), {k, 0, Ceiling[ Log[2, terms]]}] + O[x]^terms; CoefficientList[A[x], x] (* Jean-François Alcover, Jun 30 2011, updated Jan 15 2018 *)

Formula

This sequence grows asymptotically roughly like exp(log(n)^2), but with a complicated pattern of oscillations: see the article by Dumas-Flajolet, page 4, for a complete expansion that is related to A000123 and methods of de Bruijn. - Philippe Flajolet, Sep 06 2008
G.f. A(x) satisfies: A(x) = A(x^2) / (1 + x + x^2). - Ilya Gutkovskiy, Jul 09 2019

A162580 G.f.: A(x) = exp( 2*Sum_{n>=1} 2^[A007814(n)^2] * x^n/n ), where A007814(n) = exponent of highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 4, 6, 16, 26, 44, 62, 240, 418, 756, 1094, 2544, 3994, 6556, 9118, 32352, 55586, 99492, 143398, 330000, 516602, 845900, 1175198, 3452112, 5729026, 9953556, 14178086, 31076592, 47975098, 77547580, 107120062, 298608832, 490097602
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 6*x^3 + 16*x^4 + 26*x^5 + 44*x^6 + ...
log(A(x))/2 = 2^0*x + 2^1*x^2 + 2^0*x^3/3 + 2^4*x^4/4 + 2^0*x^5/5 + 2^1*x^6/6 + 2^0*x^7/7 + 2^9*x^8/8 + ... + 2^[A007814(n)^2]*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 500; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(IntegerExponent[k, 2]^2 + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*2^(valuation(m,2)^2)*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A162582 G.f.: A(x) = exp( 2*Sum_{n>=1} A006519(n)^n * x^n/n ), where A006519(n) = highest power of 2 dividing n.

Original entry on oeis.org

1, 2, 6, 10, 146, 282, 826, 1370, 4204986, 8408602, 25223066, 42037530, 615687706, 1189337882, 3483938586, 5778539290, 2305851850537847066, 4611703695297154842, 13835111074334385946, 23058518453371617050
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2009

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 146*x^4 + 282*x^5 + 826*x^6 + ...
log(A(x))/2 = 2^0*x + 2^2*x^2 + 2^0*x^3/3 + 2^8*x^4/4 + 2^0*x^5/5 + 2^6*x^6/6 + 2^0*x^7/7 + 2^24*x^8/8 + ... + A006519(n)^n*x^n/n + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 200; a[n_]:= SeriesCoefficient[Series[Exp[ Sum[2^(k*IntegerExponent[k, 2] + 1)*q^k/k, {k, 1, nmax}]], {q,0,nmax}], n]; Table[a[n], {n,0,50}] (* G. C. Greubel, Jul 04 2018 *)
  • PARI
    {a(n)=local(L=sum(m=1,n,2*(2^valuation(m,2))^m*x^m/m)+x*O(x^n));polcoeff(exp(L),n)}

A171370 Sequence generated from Lim:_{n..inf.} M^n, M = an infinite lower triangular matrix with (1,3,3,3,...) in every column, shifted down twice.

Original entry on oeis.org

1, 3, 6, 12, 18, 30, 42, 66, 84, 120, 150, 210, 252, 336, 402, 534, 618, 786, 906, 1146, 1296, 1596, 1806, 2226, 2478, 2982, 3318, 3990, 4392, 5196, 5730, 6798, 7416, 8652, 9438, 11010, 11916, 13728, 14874, 17166, 18462, 21054, 22650, 25842, 27648, 31260
Offset: 0

Views

Author

Gary W. Adamson, Dec 06 2009

Keywords

Comments

A000123 can be generated through an analogous procedure replacing (1,3,3,3,...) with (1,2,2,2,...).
A171370 has the property that (1, 3, 6, 12, 18,...) / (1, 3, 3, 3,..) generates an aerated variant: (1, 0, 3, 0, 6, 0, 12,...).
Similarly, given A000123; (1, 2, 4, 6, 10, 14,...) / (1, 2, 2, 2,...) generates an aerated variant: (1, 0, 2, 0, 6, 0, 10,...).
Row sums of the generating triangle = A032766 starting with 1. - Gary W. Adamson, Feb 15 2010

Crossrefs

Cf. A000123.
Cf. A032766. - Gary W. Adamson, Feb 15 2010

Programs

  • Maple
    a:= n-> (Matrix(n+1, (i, j)-> `if`(i=2*j-1, 1,
            `if`(i>2*j-1, 3, 0)))^n)[n+1, 1]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Apr 16 2014

Formula

Let M = an infinite lower triangular matrix with (1,3,3,3,...) in every column shifted down twice:
1;
3;
3, 1;
3, 3;
3, 3, 1;
3, 3, 3;
...
Sequence A171370 = Lim:_{n..inf.} M^n, the left-shifted vector considered as a sequence.

Extensions

a(20)-a(45) from Alois P. Heinz, Apr 16 2014
Previous Showing 51-60 of 109 results. Next