A001902
Successive denominators of Wallis's approximation to Pi/2 (reduced).
Original entry on oeis.org
1, 1, 3, 9, 45, 75, 175, 1225, 11025, 19845, 43659, 160083, 693693, 1288287, 2760615, 41409225, 703956825, 1329696225, 2807136475, 10667118605, 44801898141, 85530896451, 178837328943, 1371086188563, 11425718238025
Offset: 0
From _Wolfdieter Lang_, Dec 07 2017: (Start)
See the table in A001901 for details.
n = 5: numerator(1*2*2*4*4*6/(1*1*3*3*5*5)) = denominator(384/225) = denominator(128/75) = 75. (End)
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
-
a[n_?EvenQ] := n!!^2/((n - 1)!!^2*(n + 1)); a[n_?OddQ] := (n - 1)!!^2*(n + 1)/n!!^2; Table[a[n] // Denominator, {n, 0, 23}] (* Jean-François Alcover, Jun 19 2013 *)
A001901
Successive numerators of Wallis's approximation to Pi/2 (reduced).
Original entry on oeis.org
1, 2, 4, 16, 64, 128, 256, 2048, 16384, 32768, 65536, 262144, 1048576, 2097152, 4194304, 67108864, 1073741824, 2147483648, 4294967296, 17179869184, 68719476736, 137438953472, 274877906944, 2199023255552
Offset: 0
From _Wolfdieter Lang_, Dec 07 2017: (Start)
The Wallis numerators (N) and denominators (D) with partial products A(n) = A001900(n) and B(n) = A000246(n+1) in unreduced form, and a(n) and b(n) = A001902(n) in reduced form.
n, k: 0 1 2 3 4 5 6 7 8 9 10 ...
N(k): 1 2 2 4 4 6 6 8 8 10 10 ...
D(k): 1 1 3 3 5 5 7 7 9 9 9 ...
A(n): 1 2 4 16 64 384 2304 18432 147456 1474560 14745600 ...
B(n): 1 1 3 9 45 225 1575 11025 99225 893025 9823275 ...
a(n): 1 2 4 16 64 128 256 2048 16384 32768 65536 ...
b(n): 1 1 3 9 45 75 175 1225 11025 19845 43659 ...
n = 5: numerator(1*2*2*4*4*6/(1*1*3*3*5*5)) = numerator(384/225) = numerator(128/75) = 128. (End)
- H.-D. Ebbinghaus et al., Numbers, Springer, 1990, p. 146.
-
a[n_?EvenQ] := n!!^2/((n - 1)!!^2*(n + 1)); a[n_?OddQ] := ((n - 1)!!^2*(n + 1))/n!!^2; Table[a[n] // Numerator, {n, 0, 23}] (* Jean-François Alcover, Jun 19 2013 *)
A130915
Number of permutations in the symmetric group S_n in which cycle lengths are odd and greater than 1.
Original entry on oeis.org
1, 0, 0, 2, 0, 24, 40, 720, 2688, 42560, 245376, 4072320, 31672960, 569935872, 5576263680, 109492807424, 1290701905920, 27616577064960, 380852962029568, 8845627365089280, 139696582370328576, 3506062524305162240, 62387728088875499520, 1684340707284076756992
Offset: 0
a(3)=2 because we have (123) and (132).
-
g:=exp(-x)*sqrt((1+x)/(1-x)): gser:=series(g,x=0,30): seq(factorial(n)*coeff(gser,x,n),n=0..20); # Emeric Deutsch, Aug 25 2007
# second Maple program:
a:= proc(n) option remember;
`if`(n<3, 1/2, a(n-2)+a(n-3))*(n-1)*(n-2)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 18 2024
-
nn=20;Drop[Range[0,nn]!CoefficientList[Series[((1+x)/(1-x))^(1/2)Exp[-x],{x,0,nn}],x],1] (* Geoffrey Critzer, Dec 15 2012 *)
a[n_] := (-1)^n*Sum[If[n==k, 1, (-1)^(n + k)*(n - k)!*Sum[Sum[2^(j - i)*StirlingS1[j, i]*Binomial[n - k - 1, j - 1]/j!, {j, i, n - k}], {i, 1, n - k}]*Binomial[n, k]], {k, 0, n}]; Flatten[Table[a[n], {n, 1, 20}]] (* Detlef Meya, Jan 18 2024 *)
-
my(x='x+O('x^33)); Vec(serlaplace(exp(-x)*sqrt((1+x)/(1-x)))) \\ Joerg Arndt, Jan 18 2024
A288950
Number of relaxed compacted binary trees of right height at most one with empty initial and final sequence on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 140, 1575, 20790, 315315, 5405400, 103378275, 2182430250, 50414138775, 1264936572900, 34258698849375, 996137551158750, 30951416768146875, 1023460181133390000, 35885072600989486875, 1329858572860198631250, 51938365373373313209375
Offset: 0
Denote by L the leaf and by o nodes. Every node has exactly two out-going edges or pointers. Internal edges are denoted by - or |. Pointers are omitted and may point to any node further right. The root is at level 0 at the very left.
The general structure is
L-o-o-o-o-o-o-o-o-o
| | | |
o o-o-o o-o o.
For n=0 the a(0)=1 solution is L.
For n=1 we have a(1)=0 because we need nodes on level 0 and level 1.
For n=2 the a(2)=1 solution is
L-o
|
o
and the pointers of the node on level 1 both point to the leaf.
For n=3 the a(3)=2 solutions have the structure
L-o
|
o-o
where the pointers of the last node have to point to the leaf, but the pointer of the next node has 2 choices: the leaf of the previous node.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
Cf.
A000032,
A000246,
A001879,
A051577,
A177145,
A213527,
A288950,
A288952,
A288953,
A288954 (subclasses of relaxed compacted binary trees of right height at most one, see the Wallner link).
-
terms = 21; (z + (1 - z)/3*(2 - z + (1 - 2z)^(-1/2)) + O[z]^terms // CoefficientList[#, z] &) Range[0, terms-1]! (* Jean-François Alcover, Dec 04 2018 *)
A290383
Number of set partitions of [n] such that the smallest element of each block is odd.
Original entry on oeis.org
1, 1, 1, 2, 3, 8, 17, 56, 151, 584, 1893, 8360, 31499, 155720, 666169, 3633704, 17351967, 103284296, 543441005, 3499082408, 20079329875, 138860069192, 861908850561, 6364334129192, 42439075349543, 332934707138888, 2371469004695797, 19681714722718376
Offset: 0
a(3) = 2: 123, 12|3.
a(4) = 3: 1234, 124|3, 12|34.
a(5) = 8: 12345, 1234|5, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 12|34|5.
a(6) = 17: 123456, 12346|5, 1234|56, 12456|3, 1245|36, 1246|35, 124|356, 1246|3|5, 124|36|5, 124|3|56, 1256|34, 125|346, 126|345, 12|3456, 126|34|5, 12|346|5, 12|34|56.
-
b:= proc(n, m, t) option remember; `if`(n=0, 1,
add(b(n-1, max(m, j), 1-t), j=1..m+1-t))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..30);
# second Maple program:
b:= proc(n, m, t) option remember; `if`(n=0, 1,
`if`(t=0, b(n-1, m+1, 1-t), 0)+m*b(n-1, m, 1-t))
end:
a:= n-> b(n, 0$2):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 06 2022
-
b[n_, m_, t_]:=b[n, m, t]=If[n==0, 1, Sum[b[n - 1, Max[m, j], 1 - t], {j, m + 1 - t}]]; Table[b[n, 0, 0], {n, 0, 50}] (* Indranil Ghosh, Jul 29 2017, after Maple code *)
A288952
Number of relaxed compacted binary trees of right height at most one with empty sequences between branch nodes on level 0.
Original entry on oeis.org
1, 0, 1, 2, 15, 92, 835, 8322, 99169, 1325960, 19966329, 332259290, 6070777999, 120694673748, 2594992240555, 59986047422378, 1483663965460545, 39095051587497488, 1093394763005554801, 32347902448449172530, 1009325655965539561231, 33125674098690460236620
Offset: 0
- Muniru A Asiru, Table of n, a(n) for n = 0..100
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
Cf.
A001147 (relaxed compacted binary trees of right height at most one).
Cf.
A082161 (relaxed compacted binary trees of unbounded right height).
-
a := [1,0];; for n in [3..10^2] do a[n] := (n-2)*a[n-1] + (n-2)^2*a[n-2]; od; a; # Muniru A Asiru, Jan 26 2018
-
a:=proc(n) option remember: if n=0 then 1 elif n=1 then 0 elif n>=2 then (n-1)*procname(n-1)-(n-1)^2*procname(n-2) fi; end:
seq(a(n),n=0..100); # Muniru A Asiru, Jan 26 2018
-
Fold[Append[#1, (#2 - 1) Last[#1] + #1[[#2 - 1]] (#2 - 1)^2] &, {1, 0}, Range[2, 21]] (* Michael De Vlieger, Jan 28 2018 *)
A059838
Number of permutations in the symmetric group S_n that have even order.
Original entry on oeis.org
0, 0, 1, 3, 15, 75, 495, 3465, 29295, 263655, 2735775, 30093525, 370945575, 4822292475, 68916822975, 1033752344625, 16813959537375, 285837312135375, 5214921734397375, 99083512953550125, 2004231846526284375, 42088868777051971875, 934957186489800849375
Offset: 0
Avi Peretz (njk(AT)netvision.net.il), Feb 25 2001
A permutation in S_4 has even order iff it is a transposition, a product of two disjoint transpositions or a 4 cycle so a(4) = C(4,2)+ C(4,2)/2 + 3! = 15.
-
List([1..9],n->Length(Filtered(SymmetricGroup(n),x->(Order(x) mod 2)=0)));
-
s := series((1-sqrt(1-x^2))/(1-x), x, 21): for i from 0 to 20 do printf(`%d,`,i!*coeff(s,x,i)) od:
-
a[n_] := a[n] = n! - ((n-1)! - a[n-1]) * (n+Mod[n, 2]-1); a[0] = 0; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 21 2011, after Pari *)
With[{nn=20},CoefficientList[Series[(1-Sqrt[1-x^2])/(1-x),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 05 2015 *)
-
a(n)=if(n<1,0,n!-((n-1)!-a(n-1))*(n+n%2-1))
A060523
Triangle T(n,k) = number of degree-n permutations with k even cycles, k=0..n.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 3, 3, 0, 0, 9, 12, 3, 0, 0, 45, 60, 15, 0, 0, 0, 225, 345, 135, 15, 0, 0, 0, 1575, 2415, 945, 105, 0, 0, 0, 0, 11025, 18480, 9030, 1680, 105, 0, 0, 0, 0, 99225, 166320, 81270, 15120, 945, 0, 0, 0, 0, 0, 893025, 1596105, 897750, 217350, 23625, 945, 0, 0, 0, 0, 0
Offset: 0
Triangle T(n,k) begins:
1;
1, 0;
1, 1, 0;
3, 3, 0, 0;
9, 12, 3, 0, 0;
45, 60, 15, 0, 0, 0;
225, 345, 135, 15, 0, 0, 0;
1575, 2415, 945, 105, 0, 0, 0, 0;
11025, 18480, 9030, 1680, 105, 0, 0, 0, 0;
99225, 166320, 81270, 15120, 945, 0, 0, 0, 0, 0;
893025, 1596105, 897750, 217350, 23625, 945, 0, 0, 0, 0, 0;
...
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, p. 189, Exercise 3.3.13.
-
with(combinat):
b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)*(i-1)!^j/j!*b(n-i*j, i-1)*
`if`(irem(i, 2)=0, x^j, 1), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n$2)):
seq(T(n), n=0..12); # Alois P. Heinz, Mar 09 2015
-
nn = 6; Range[0, nn]! CoefficientList[
Series[(1 - x^2)^(-y/2) ((1 + x)/(1 - x))^(1/2), {x, 0, nn}], {x, y}] // Grid (* Geoffrey Critzer, Aug 27 2012 *)
A092798
Numerator of partial products in an approximation of Pi/2.
Original entry on oeis.org
2, 16, 8192, 274877906944, 5070602400912917605986812821504, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 1
The first approximations are 2^(1/2), (16/3)^(1/4), (8192/243)^(1/8), (274877906944/215233605)^(1/16).
- J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent, Ramanujan J. 16 (2008) 247-270; arXiv:math/0506319 [math.NT], 2005-2006.
- J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), arXiv:math/0401406 [math.NT], 2004.
- J. Sondow, A faster product for Pi and a new integral for ln(Pi/2), Amer. Math. Monthly 112 (2005), 729-734 and 113 (2006), 670.
-
for(m=1, 7, p=1; for(n=1, m, p=p*p*(prod(k=1, ceil(n/2), (2*k)^binomial(n, 2*k-1))/(prod(k=1, floor(n/2)+1, (2*k-1)^binomial(n, 2*k-2))))); print1(numerator(p), ", "))
A102736
Number of permutations of n elements without cycles whose length is a multiple of 3.
Original entry on oeis.org
1, 1, 2, 4, 16, 80, 400, 2800, 22400, 179200, 1792000, 19712000, 216832000, 2818816000, 39463424000, 552487936000, 8839806976000, 150276718592000, 2554704216064000, 48539380105216000, 970787602104320000, 19415752042086400000, 427146544925900800000, 9824370533295718400000, 225960522265801523200000, 5649013056645038080000000, 146874339472770990080000000, 3818732826292045742080000000
Offset: 0
G.f. = 1 + x + 2*x^2 + 4*x^3 + 16*x^4 + 80*x^5 + 400*x^6 + 2800*x^7 + ...
-
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
irem(j, 3)=0, 0, a(n-j)*(j-1)!*binomial(n-1, j-1)), j=1..n))
end:
seq(a(n), n=0..27); # Alois P. Heinz, Jul 31 2017
-
nn=21;a=Sum[x^n/n,{n,3,nn,3}];Range[0,nn]!CoefficientList[Series[Exp[Log[1/(1-x)]-a],{x,0,nn}],x] (* Geoffrey Critzer, Nov 11 2012 *)
a[ n_] := If[ n < 0, 0, n! With[{m = Quotient[n, 3]}, (-1)^m Binomial[-2/3, m]]]; (* Michael Somos, Aug 05 2016 *)
-
{a(n) = my(m); if( n<0, 0, m = n\3; n! * (-1)^m * binomial(-2/3, m))}; /* Michael Somos, Aug 05 2016 */
Comments