A365969
Expansion of e.g.f. exp( Sum_{k>=0} x^(5*k+1) / (5*k+1) ).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 3684241, 50309281, 369738721, 1926648361, 7980936601, 1335634023361, 27705746752321, 302258931418081, 2283161710263841, 13419441405835201, 2498339829188508481, 70152448708746111961, 1025314852704395518441
Offset: 0
A110491
Expansion of e.g.f.: sqrt(1+2x)/sqrt(1-2x).
Original entry on oeis.org
1, 2, 4, 24, 144, 1440, 14400, 201600, 2822400, 50803200, 914457600, 20118067200, 442597478400, 11507534438400, 299195895398400, 8975876861952000, 269276305858560000, 9155394399191040000, 311283409572495360000
Offset: 0
-
S:= series(sqrt(1+2*x)/sqrt(1-2*x),x,31):
seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, Jun 08 2016
-
With[{nn=20},CoefficientList[Series[Sqrt[1+2x]/Sqrt[1-2x],{x,0,nn}],x] Range[0,nn]!] (* or *) Join[{1},Table[2n!Binomial[n-1,Floor[(n-1)/2]], {n,20}]] (* Harvey P. Dale, Nov 11 2011 *)
Table[2^n Binomial[1/2,n] n! Hypergeometric2F1[1/2, -n, 3/2 - n, -1], {n, 0, 20}] (* Benedict W. J. Irwin, Jun 06 2016 *)
-
my(x='x+O('x^25)); Vec(serlaplace(sqrt(1+2*x)/sqrt(1-2*x))) \\ Michel Marcus, Aug 05 2021
A113774
Number of partitions of {1,...,n} into block sizes not a multiple of 3.
Original entry on oeis.org
1, 1, 2, 4, 11, 32, 112, 415, 1732, 7678, 37115, 190016, 1039546, 5996083, 36528196, 233492044, 1564012751, 10940385668, 79762304116, 604791685063, 4760047233424, 38825234812882, 327641201731475, 2856835856307428, 25702896025566886, 238331921722835203
Offset: 0
-
nmax := 30: B := add(op(1+(i mod 3),[0,1,1])*x^i/i!,i=0..nmax) : egf := 0 : for i from 0 to nmax do egf := convert(egf+taylor(B^i,x=0,nmax+1)/i!,polynom) : od: for i from 0 to nmax do printf("%d ", i!*coeftayl(egf,x=0,i)) ; od: # R. J. Mathar, Feb 06 2008
# second Maple program:
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(
irem(j, 3)=0, 0, binomial(n-1, j-1)*a(n-j)), j=1..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Mar 17 2015
-
a=Sum[x^(3i)/(3i)!,{i,1,20}]; Range[0, 20]! CoefficientList[Series[Exp[Exp[x] - 1 - a], {x, 0, 20}], x] (* Geoffrey Critzer, Jan 02 2011 *)
A275385
Number of labeled functional digraphs on n nodes with only odd sized cycles and such that every vertex is at a distance of at most 1 from a cycle.
Original entry on oeis.org
1, 1, 3, 12, 73, 580, 5601, 63994, 844929, 12647016, 211616065, 3914510446, 79320037281, 1747219469164, 41569414869633, 1062343684252530, 29023112392093441, 844101839207139280, 26038508978625589377, 849150487829425227094, 29189561873274715264545
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1, add(`if`(j::odd,
(j-1)!*b(n-j)*binomial(n-1, j-1), 0), j=1..n))
end:
a:= n-> add(b(j)*j^(n-j)*binomial(n, j), j=0..n):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 25 2016
-
nn = 20; Range[0, nn]! CoefficientList[Series[Sqrt[(1 + z*Exp[z])/(1 - z*Exp[z])], {z, 0, nn}], z]
-
default(seriesprecision, 30);
S=sqrt((1 + x*exp(x))/(1 - x*exp(x)));
v=Vec(S); for(n=2,#v-1,v[n+1]*=n!); v \\ Charles R Greathouse IV, Jul 29 2016
A316666
Number of simple relaxed compacted binary trees of right height at most one with no sequences on level 1 and no final sequences on level 0.
Original entry on oeis.org
1, 0, 1, 3, 15, 87, 597, 4701, 41787, 413691, 4512993, 53779833, 695000919, 9680369943, 144560191149, 2303928046437, 39031251610227, 700394126116851, 13270625547477177, 264748979672169681, 5547121478845459983, 121784530649198053263, 2795749225338111831429, 66981491857058929294653
Offset: 0
- G. C. Greubel, Table of n, a(n) for n = 0..448
- Antoine Genitrini, Bernhard Gittenberger, Manuel Kauers and Michael Wallner, Asymptotic Enumeration of Compacted Binary Trees, arXiv:1703.10031 [math.CO], 2017.
- Michael Wallner, A bijection of plane increasing trees with relaxed binary trees of right height at most one, arXiv:1706.07163 [math.CO], 2017.
-
m:=25; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (3*Exp(-x) + x-2)/(1-x)^2 )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Dec 12 2018
-
aseq := n-> 3*round((n+2)*n!/exp(1))-(n+2)*n!: bseq := n-> (n+2)*n!- 2* round((n+2)*n!/exp(1)): s := (a,b,n)-> a*aseq(n) + b*bseq( n): seq(s(1,0,n),n = 0..20); # Gary Detlefs, Dec 11 2018
-
terms = 24;
CoefficientList[(3E^-z+z-2)/(1-z)^2 + O[z]^terms, z] Range[0, terms-1]! (* Jean-François Alcover, Sep 14 2018 *)
-
Vec(serlaplace((3*exp(-x + O(x^25)) + x - 2)/(1 - x)^2)) \\ Andrew Howroyd, Jul 10 2018
A346943
a(n) = a(n-1) + n*(n+1)*a(n-2) with a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 7, 19, 159, 729, 7407, 48231, 581535, 4922325, 68891175, 718638075, 11465661375, 142257791025, 2550046679775, 36691916525775, 730304613424575, 11958031070311725, 261722208861516375, 4805774015579971875, 114729101737416849375, 2334996696935363855625
Offset: 0
-
RecurrenceTable[{a[n] == a[n-1] + n*(n+1)*a[n-2], a[0]==1, a[1]==1}, a, {n,0,20}]
nmax = 20; CoefficientList[Series[(-2 + Pi + 2*Pi*x + 4*Sqrt[1 - x^2] + 2*x*(-2 + Sqrt[1 - x^2]) - 4*(1 + 2*x) * ArcSin[Sqrt[1 - x]/Sqrt[2]]) / (2*(1 - x)^(5/2) * (1 + x)^(3/2)), {x, 0, nmax}], x] * Range[0, nmax]!
A346371
Sum_{n>=0} a(n) * x^n / (n!)^2 = exp( Sum_{n>=0} x^(2*n+1) / (2*n+1)^2 ).
Original entry on oeis.org
1, 1, 2, 10, 88, 1496, 34256, 1305872, 57804160, 3960382848, 288097804032, 31177032137472, 3374496463248384, 530644850402565120, 79955455534325999616, 17241179374803330287616, 3448609425518084068048896, 977269122457749276877750272, 250420488297020919542581493760
Offset: 0
-
nmax = 18; CoefficientList[Series[Exp[Sum[x^(2 k + 1)/(2 k + 1)^2, {k, 0, Infinity}]], {x, 0, nmax}], x] Range[0, nmax]!^2
a[0] = 1; a[n_] := a[n] = (1/n) Sum[(Binomial[n, 2 k + 1] (2 k + 1)!)^2 a[n - 2 k - 1]/(2 k + 1), {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 18}]
Comments