A000256
Number of simple triangulations of the plane with n nodes.
Original entry on oeis.org
1, 1, 0, 1, 3, 12, 52, 241, 1173, 5929, 30880, 164796, 897380, 4970296, 27930828, 158935761, 914325657, 5310702819, 31110146416, 183634501753, 1091371140915, 6526333259312, 39246152584304, 237214507388796, 1440503185260748
Offset: 3
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- W. T. Tutte, The enumerative theory of planar maps, pp. 437-448 of J. N. Srivastava, ed., A Survey of Combinatorial Theory, North-Holland, 1973.
- T. D. Noe, Table of n, a(n) for n=3..200
- Hsien-Kuei Hwang, Mihyun Kang, and Guan-Huei Duh, Asymptotic Expansions for Sub-Critical Lagrangean Forms, LIPIcs Proceedings of Analysis of Algorithms 2018, Vol. 110. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, Une méthode pour obtenir la fonction génératrice d'une série. FPSAC 1993, Florence. Formal Power Series and Algebraic Combinatorics; arXiv:0912.0072 [math.NT], 2009.
- P. N. Rathie, A census of simple planar triangulations, J. Combin. Theory, B 16 (1974), 134-138.
- William T. Tutte, A census of planar triangulations, Canad. J. Math. 14 (1962), 21-38.
- William T. Tutte, A Census of Planar Maps, Canad. J. Math. 15 (1963), 249-271.
-
R := RootOf(x-t*(t-1)^2, t); ogf := series( (2*R^3+2*R^2-2*R-1)/((R-1)*(R+1)^2), x=0, 20); # Mark van Hoeij, Nov 08 2011
-
r = Root[x - t*(t - 1)^2, t, 1] ; CoefficientList[ Series[(2*r^3 + 2*r^2 - 2*r - 1)/((r - 1)*(r + 1)^2), {x, 0, 24}], x] (* Jean-François Alcover, Mar 14 2012, after Maple *)
-
A000260_ser(N) = {
my(v = vector(N, n, binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))));
Ser(concat(1,v));
};
A000256_seq(N) = {
my(g = A000260_ser(N)); Vec(subst(2 - 1/g, 'x, serreverse(x*g^2)));
};
A000256_seq(24)
\\ test: y = Ser(A000256_seq(200)); 0 == x*(x+4)^2*y^3 - x*(6*x^2+51*x+76)*y^2 + (12*x^3+108*x^2+115*x-1)*y - (8*x^3+76*x^2+54*x-1)
\\ Gheorghe Coserea, Jul 31 2017
-
seq(n)={my(g=1+serreverse(x/(1+x)^4 + O(x*x^n) )); Vec(2 - sqrt(serreverse( x*(2-g)^2*g^4)/x ))} \\ Andrew Howroyd, Feb 23 2021
A006390
Number of sensed loopless planar maps with n edges.
Original entry on oeis.org
1, 1, 2, 5, 14, 49, 240, 1259, 7570, 47996, 319518, 2199295, 15571610, 112773478, 832809504, 6253673323, 47650870538, 367784975116, 2871331929096, 22647192990256, 180277915464664, 1447060793168493, 11703567787559680, 95312765368320637, 781151020141584190
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- V. A. Liskovets and T. R. S. Walsh, Counting Unrooted Loopless Planar Maps [Extended abstract]
- V. A. Liskovets and T. R. S. Walsh, Counting unrooted loopless planar maps, Europ. J. Combin., 26:5 (2005), 651-663.
- Timothy R. Walsh, Generating nonisomorphic maps without storing them, SIAM J. Algebraic Discrete Methods 4 (1983), no. 2, 161-178.
-
a[n_] := If[n==0, 1, (1/(2n))(Sum[Binomial[4k, k] EulerPhi[n/k] Boole[ 0Jean-François Alcover, Aug 29 2019 *)
-
a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021
A197271
a(n) = (10 / ((3*n+1)*(3*n+2))) * binomial(4*n, n).
Original entry on oeis.org
5, 2, 5, 20, 100, 570, 3542, 23400, 161820, 1159400, 8544965, 64448228, 495508780, 3872033900, 30680401500, 246041115600, 1993987498284, 16310419381080, 134519771966180, 1117653277802000, 9347742311507600, 78652006531467930, 665393840873409150, 5657273782416664200, 48318619683648190500
Offset: 0
- Michael De Vlieger, Table of n, a(n) for n = 0..1031
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
- K. A. Penson, K. Górska, A. Horzela, and G. H. E. Duchamp, Hausdorff moment problem for combinatorial numbers of Brown and Tutte: exact solution, arXiv:2209.06574 [math.CO], 2022.
- G. Schaeffer, A combinatorial interpretation of super-Catalan numbers of order two, (2001).
- William T. Tutte, On the enumeration of convex polyhedra, J. Combin. Theory Ser. B 28 (1980), 105-126.
-
Table[10/((3n+1)(3n+2)) Binomial[4n,n],{n,0,30}] (* Harvey P. Dale, Jan 27 2015 *)
A027836
Total number of vertices in all loopless rooted planar maps with n edges.
Original entry on oeis.org
1, 2, 8, 43, 268, 1824, 13156, 98865, 765948, 6075256, 49094708, 402801425, 3346590068, 28099903160, 238079915640, 2032914717645, 17476713955548, 151143219598008, 1314045772469632, 11478299163026540, 100688538612524720, 886622619082002120, 7834289222109530340
Offset: 0
- L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!);
-
Join[{1},Table[12n (4n-1)! (5n^2+13n+2)/(n!(3n+3)!),{n,20}]] (* Harvey P. Dale, May 20 2018 *)
-
a(n) = if(n==0, 1, 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!)) \\ Andrew Howroyd, Apr 06 2021
Offset corrected and terms a(21) and beyond from
Andrew Howroyd, Apr 06 2021
A002712
Number of unrooted triangulations of a disk that have reflection symmetry with n interior nodes and 3 nodes on the boundary.
Original entry on oeis.org
1, 1, 1, 3, 8, 23, 68, 215, 680, 2226, 7327, 24607, 83060, 284046, 975950, 3383343, 11778308, 41269252, 145131502, 512881550, 1818259952, 6470758289, 23091680690, 82659905947, 296605398856, 1067012168350, 3846553544904, 13896522968160, 50296815014780, 182378110257354, 662384549806938
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andrew Howroyd, Table of n, a(n) for n = 0..500
- William G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768.
- W. G. Brown, Enumeration of Triangulations of the Disk, Proc. Lond. Math. Soc. s3-14 (1964) 746-768. [Annotated scanned copy]
- C. F. Earl and L. J. March, Architectural applications of graph theory, pp. 327-355 of R. J. Wilson and L. W. Beineke, editors, Applications of Graph Theory. Academic Press, NY, 1979. (Annotated scanned copy)
-
Dc := proc(n,m) 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ; end:
A000260 := proc(n) Dc(n,0) ; end:
Dx2 := proc(nmax) add( A000260(n)*x^(2*n),n=0..nmax) ; end:
o := 20: Order := 2*o-1 : j := solve( J0=1+x*J0+x^2*J0*(1+x*J0/2)*series(J0^2-Dx2(o),x=0,2*o-1),J0) ;
for n from 0 to 2*o-2 do printf("%d,",coeftayl(j,x=0,n)) ; od: # R. J. Mathar, Oct 29 2008
-
seq[m_] := Module[{q}, q = Sum[x^(2n) Binomial[4n+2, n+1]/ ((2n+1)(3n+2)), {n, 0, Quotient[m, 2]}]; p = 1+O[x]; Do[p = 1 + x*p + x^2*p*(1+x*p/2)(p^2-q), {n, 1, m}]; CoefficientList[p, x]];
seq[30] (* Jean-François Alcover, Apr 25 2023, after Andrew Howroyd *)
-
seq(n)={my(q=sum(n=0, n\2, x^(2*n)*binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))), p=1+O(x)); for(n=1, n, p = 1 + x*p + x^2*p*(1 + x*p/2)*(p^2 - q)); Vec(p)} \\ Andrew Howroyd, Feb 24 2021
Name clarified and terms a(27) and beyond from
Andrew Howroyd, Feb 24 2021
A007767
Number of pairs of permutations of degree n that avoid (12,21).
Original entry on oeis.org
1, 1, 3, 17, 151, 1899, 31711, 672697, 17551323, 549500451, 20246665349, 864261579999, 42190730051687, 2329965898878307, 144220683681814515, 9926440976428215117, 754465679498026783923, 62939664181821196179459, 5732069150321309755351161, 567176164248814234096702451
Offset: 0
- Andrew Elvey Price, Table of n, a(n) for n = 0..26
- Noga Alon, Kirill Rudov, and Leeat Yariv, Dominance Solvability in Random Games, Princeton Univ. (2020).
- Noga Alon, Kirill Rudov, and Leeat Yariv, Online Appendix for 'Dominance Solvability in Random Games', Princeton Univ. (2021).
- Grégory Chatel, Vincent Pilaud, and Viviane Pons, The weak order on integer posets, arXiv:1701.07995 [math.CO], 2017.
- Clément Chenevière, Enumerative study of intervals in lattices of Tamari type, Ph. D. thesis, Univ. Strasbourg (France), Ruhr-Univ. Bochum (Germany), HAL tel-04255439 [math.CO], 2024. See pp. 3, 33, 145.
- Joël Gay and Vincent Pilaud, The weak order on Weyl posets, arXiv:1804.06572 [math.CO], 2018.
- Benjamin Gunby, Asymptotics of Pattern Avoidance in the Permutation-Tuple and Klazar Set Partition Settings, arXiv:1609.06023 [math.CO], 2017.
- Adam Hammett and Boris Pittel, How often are two permutations comparable?, Transactions of the AMS 360:9 (2008), 4541-4568.
- Evgeny Kapun, Java program for generating terms a(0)-a(13).
A006391
Number of unsensed loopless planar maps with n edges.
Original entry on oeis.org
1, 1, 2, 5, 14, 45, 191, 871, 4682, 27336, 172706, 1150322, 7989004
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A058859
Number of 1-connected rooted cubic planar maps with n faces.
Original entry on oeis.org
1, 3, 19, 143, 1089, 8564, 69075, 569469, 4783377, 40829748, 353395155, 3096104105, 27415923905, 245069538465, 2209155012387, 20064713628389, 183478258249569, 1688112897834496, 15618577076864579, 145242456429736935
Offset: 4
-
eq:=16*x^11*m^4+(-24*x^9+32*x^8+72*x^7)*m^3+(-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2+(-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m-x^2-11*x+1: m:=sum(A[j]*x^j,j=0..35): A[0]:=solve(subs(x=0,expand(eq))): for n from 1 to 35 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C:=(1-2*x-4*x^2)*x^4*m-2*x^8*m^2: Cser:=series(C,x=0,30): seq(coeff(Cser,x^n),n=4..26); # Emeric Deutsch, Nov 30 2005
-
F = x^4*(1-2*x-4*x^2)*z - 2*x^8*z^2;
G = 16*x^11*z^4 - 8*x^7*(3*x^2 - 4*x - 9)*z^3 - x^3*(15*x^4 + 108*x^3 + 194*x^2 + 92*x - 1)*z^2 - (2*x^5 + 33*x^4 + 70*x^3 + 46*x^2 - 16*x + 1)*z - x^2 - 11*x + 1;
Z(N) = {
my(z0 = 1 + O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1); z0;
};
seq(N) = Vec(subst(F, 'z, Z(N)));
seq(20)
\\ test: y = Ser(seq(303))*'x^4; 0 == 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41)
\\ Gheorghe Coserea, Jul 15 2018
A058861
Number of 3-connected rooted cubic planar maps with n faces and girth at least 4.
Original entry on oeis.org
0, 0, 1, 3, 12, 59, 313, 1713, 9559, 54189, 311460, 1812281, 10661303, 63336873, 379601353, 2293205687, 13953099573, 85451824382, 526431271347, 3260689089300, 20296848348929, 126918850161182, 796981464813540
Offset: 4
-
eq:=(x^3-3*x^2+3*x-1)*g^4+(4*x^4-12*x^3+9*x^2+2*x-3)*g^3+(6*x^5-10*x^4-15*x^3+36*x^2-14*x-3)*g^2+(4*x^6+4*x^5-45*x^4+82*x^3-59*x^2+14*x-1)*g+x^7+5*x^6-8*x^5+x^4: g:=sum(A[j]*x^j,j=1..37): for n from 1 to 37 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C3:=x^2*(1-3*x)*g: C3ser:=series(C3,x=0,34): seq(coeff(C3ser,x^n),n=6..30); # Emeric Deutsch, Nov 30 2005
-
F = x^2*(1 - 3*x)*z;
G = x^12*(x - 1)^3*z^4 + x^8*(x - 1)^2*(2*x - 3)*(2*x + 1)*z^3 + x^4*(x - 1)*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*z^2 + (4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*z + (x^3 + 5*x^2 - 8*x + 1);
Z(N) = {
my(z0 = 1 + O('x^N), z1=0, n=1);
while (n++,
z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
if (z1 == z0, break()); z0 = z1); z0;
};
seq(N) = concat([0, 0], Vec(subst(F, 'z, 'x^4*Z(N))));
seq(21)
\\ test: y = Ser(seq(303))*'x^4; 0 == (x - 1)^3*y^4 - x^2*(x - 1)^2*(2*x - 3)*(2*x + 1)*(3*x - 1)*y^3 + x^4*(x - 1)*(3*x - 1)^2*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*y^2 - x^6*(3*x - 1)^3*(4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*y + x^12*(3*x - 1)^4*(x^3 + 5*x^2 - 8*x + 1)
\\ Gheorghe Coserea, Jul 15 2018
A103941
Number of unrooted loopless n-edge maps in the plane (planar with a distinguished outside face).
Original entry on oeis.org
1, 1, 2, 6, 22, 103, 614, 3872, 26414, 186988, 1367976, 10254326, 78461338, 610598818, 4821248244, 38546510368, 311560875422, 2542507084588, 20925300483992, 173530381632724, 1448900079476152, 12172334379246523, 102833593763830038, 873187910184763024, 7449120536014301138
Offset: 0
- V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.
-
a[n_] := (1/(2n)) (Binomial[4n, n]/(3n+1) + Sum[Boole[0 < k < n] EulerPhi[ n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
q[n_] := If[EvenQ[n], 0, Binomial[2n, (n-1)/2]];
Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
-
a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021
a(0)=1 prepended and terms a(21) and beyond from
Andrew Howroyd, Mar 28 2021
Comments