cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 48 results. Next

A000256 Number of simple triangulations of the plane with n nodes.

Original entry on oeis.org

1, 1, 0, 1, 3, 12, 52, 241, 1173, 5929, 30880, 164796, 897380, 4970296, 27930828, 158935761, 914325657, 5310702819, 31110146416, 183634501753, 1091371140915, 6526333259312, 39246152584304, 237214507388796, 1440503185260748
Offset: 3

Views

Author

Keywords

Comments

A triangulation is simple if it contains no separating 3-cycle. The triangulations are rooted with three fixed exterior nodes. - Andrew Howroyd, Feb 24 2021

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • W. T. Tutte, The enumerative theory of planar maps, pp. 437-448 of J. N. Srivastava, ed., A Survey of Combinatorial Theory, North-Holland, 1973.

Crossrefs

First row of array in A210664.

Programs

  • Maple
    R := RootOf(x-t*(t-1)^2, t); ogf := series( (2*R^3+2*R^2-2*R-1)/((R-1)*(R+1)^2), x=0, 20); # Mark van Hoeij, Nov 08 2011
  • Mathematica
    r = Root[x - t*(t - 1)^2, t, 1] ; CoefficientList[ Series[(2*r^3 + 2*r^2 - 2*r - 1)/((r - 1)*(r + 1)^2), {x, 0, 24}], x] (* Jean-François Alcover, Mar 14 2012, after Maple *)
  • PARI
    A000260_ser(N) = {
      my(v = vector(N, n, binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))));
      Ser(concat(1,v));
    };
    A000256_seq(N) = {
      my(g = A000260_ser(N)); Vec(subst(2 - 1/g, 'x, serreverse(x*g^2)));
    };
    A000256_seq(24)
    \\ test: y = Ser(A000256_seq(200)); 0 == x*(x+4)^2*y^3 - x*(6*x^2+51*x+76)*y^2 + (12*x^3+108*x^2+115*x-1)*y - (8*x^3+76*x^2+54*x-1)
    \\ Gheorghe Coserea, Jul 31 2017
    
  • PARI
    seq(n)={my(g=1+serreverse(x/(1+x)^4 + O(x*x^n) )); Vec(2 - sqrt(serreverse( x*(2-g)^2*g^4)/x ))} \\ Andrew Howroyd, Feb 23 2021

Formula

a(n) = (1/4)*(7*binomial(3*n-9, n-4)-(8*n^2-43*n+57)*a(n-1)) / (8*n^2-51*n+81), n>4. - Vladeta Jovovic, Aug 19 2004
(1/4 + 7/8*n - 9/8*n^3)*a(n) + (-5/4 + 2/3*n + 59/12*n^2 - 13/3*n^3)*a(n+1) + (-1 - 2/3*n + n^2 + 2/3*n^3)*a(n+2). - Simon Plouffe, Feb 09 2012
a(n) ~ 3^(3*n-6+1/2)/(2^(2*n+3)*sqrt(Pi)*n^(5/2)). - Vaclav Kotesovec, Aug 13 2013
From Gheorghe Coserea, Jul 31 2017: (Start)
G.f. y(x) satisfies (with offset 0):
y(x*g^2) = 2 - 1/g, where g=A000260(x). (eqn 2.6 in Tutte's paper)
0 = x*(x+4)^2*y^3 - x*(6*x^2+51*x+76)*y^2 + (12*x^3+108*x^2+115*x-1)*y - (8*x^3+76*x^2+54*x-1).
0 = x*(27*x-4)*deriv(y,x) + x*(7*x+28)*y^2 - 2*(14*x^2+45*x+1)*y + 2*(14*x^2+34*x+1).
(End)

Extensions

More terms from Vladeta Jovovic, Aug 19 2004

A006390 Number of sensed loopless planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 5, 14, 49, 240, 1259, 7570, 47996, 319518, 2199295, 15571610, 112773478, 832809504, 6253673323, 47650870538, 367784975116, 2871331929096, 22647192990256, 180277915464664, 1447060793168493, 11703567787559680, 95312765368320637, 781151020141584190
Offset: 0

Views

Author

Keywords

Comments

By duality, also the number of sensed isthmusless planar maps with n edges. An isthmus may also be called a bridge. - Andrew Howroyd, Mar 28 2021

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A006384, A000260 (rooted), A006391 (unsensed case), A103941 (with distinguished face), A103942 (with distinguished vertex).

Programs

  • Mathematica
    a[n_] := If[n==0, 1, (1/(2n))(Sum[Binomial[4k, k] EulerPhi[n/k] Boole[ 0Jean-François Alcover, Aug 29 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

a(n) = (1/(2n))*[2(4n+1)*binomial(4n, n)/((n+1)*(3n+1)*(3n+2)) + Sum_{0A000010), q(n)=binomial(2n, (n-2)/2) if n is even and q(n)=2n*binomial(2n, (n-1)/2)/(n+1) if n is odd.

Extensions

More terms from Valery A. Liskovets, Dec 01 2003
a(17) and a(19) corrected by Sean A. Irvine, Mar 26 2017

A197271 a(n) = (10 / ((3*n+1)*(3*n+2))) * binomial(4*n, n).

Original entry on oeis.org

5, 2, 5, 20, 100, 570, 3542, 23400, 161820, 1159400, 8544965, 64448228, 495508780, 3872033900, 30680401500, 246041115600, 1993987498284, 16310419381080, 134519771966180, 1117653277802000, 9347742311507600, 78652006531467930, 665393840873409150, 5657273782416664200, 48318619683648190500
Offset: 0

Views

Author

Peter Bala, Oct 12 2011

Keywords

Comments

A combinatorial interpretation for this sequence in terms of a family of plane trees is given in [Schaeffer, Corollary 2 with k = 4].
For n>=1, the number of rooted strict triangulations of a square with n-1 internal vertices, where a triangulation is "strict" if no two distinct edges have the same pair of ends. See equation (1) in [Tutte 1980] (who references [Brown 1964]) for the number of rooted strict near-triangulations of type (n,m), with m=1. - Noam Zeilberger, Jan 04 2023

Crossrefs

Column m=1 of A146305.

Programs

  • Mathematica
    Table[10/((3n+1)(3n+2)) Binomial[4n,n],{n,0,30}] (* Harvey P. Dale, Jan 27 2015 *)

Formula

a(n) = 10/((3*n+1)*(3*n+2))*binomial(4*n,n).
a(n) = A000260(n) * 5*(n+1)/(4*n+1). - Noam Zeilberger, May 20 2019
a(n) ~ c*(256/27)^n / n^(5/2), where c = (10/9)*sqrt(2/(3*Pi)) = 0.511843.... - Peter Luschny, Jan 05 2023
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Jul 31 2024

A027836 Total number of vertices in all loopless rooted planar maps with n edges.

Original entry on oeis.org

1, 2, 8, 43, 268, 1824, 13156, 98865, 765948, 6075256, 49094708, 402801425, 3346590068, 28099903160, 238079915640, 2032914717645, 17476713955548, 151143219598008, 1314045772469632, 11478299163026540, 100688538612524720, 886622619082002120, 7834289222109530340
Offset: 0

Views

Author

Keywords

Comments

The number of rooted isthmusless n-edge maps in the plane (planar with a distinguished outside face). - Valery A. Liskovets, Mar 17 2005

References

  • L. M. Koganov, V. A. Liskovets, T. R. S. Walsh, Total vertex enumeration in rooted planar maps, Ars Combin. 54 (2000), 149-160.
  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Maple
    12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!);
  • Mathematica
    Join[{1},Table[12n (4n-1)! (5n^2+13n+2)/(n!(3n+3)!),{n,20}]] (* Harvey P. Dale, May 20 2018 *)
  • PARI
    a(n) = if(n==0, 1, 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!)) \\ Andrew Howroyd, Apr 06 2021

Formula

a(n) = 12*n*(4*n-1)!*(5*n^2+13*n+2)/(n!*(3*n+3)!) for n > 0.
G.f.: -(1-3*g+g^2)*g where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Nov 11 2011
a(n) = Sum_{k=1..n+1} k*A342981(n, k). - Andrew Howroyd, Apr 06 2021

Extensions

Offset corrected and terms a(21) and beyond from Andrew Howroyd, Apr 06 2021

A002712 Number of unrooted triangulations of a disk that have reflection symmetry with n interior nodes and 3 nodes on the boundary.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 68, 215, 680, 2226, 7327, 24607, 83060, 284046, 975950, 3383343, 11778308, 41269252, 145131502, 512881550, 1818259952, 6470758289, 23091680690, 82659905947, 296605398856, 1067012168350, 3846553544904, 13896522968160, 50296815014780, 182378110257354, 662384549806938
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,0]-triangulations.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A169809.

Programs

  • Maple
    Dc := proc(n,m) 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ; end:
    A000260 := proc(n) Dc(n,0) ; end:
    Dx2 := proc(nmax) add( A000260(n)*x^(2*n),n=0..nmax) ; end:
    o := 20: Order := 2*o-1 : j := solve( J0=1+x*J0+x^2*J0*(1+x*J0/2)*series(J0^2-Dx2(o),x=0,2*o-1),J0) ;
    for n from 0 to 2*o-2 do printf("%d,",coeftayl(j,x=0,n)) ; od: # R. J. Mathar, Oct 29 2008
  • Mathematica
    seq[m_] := Module[{q}, q = Sum[x^(2n) Binomial[4n+2, n+1]/ ((2n+1)(3n+2)), {n, 0, Quotient[m, 2]}]; p = 1+O[x]; Do[p = 1 + x*p + x^2*p*(1+x*p/2)(p^2-q), {n, 1, m}]; CoefficientList[p, x]];
    seq[30] (* Jean-François Alcover, Apr 25 2023, after Andrew Howroyd *)
  • PARI
    seq(n)={my(q=sum(n=0, n\2, x^(2*n)*binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))), p=1+O(x)); for(n=1, n, p = 1 + x*p + x^2*p*(1 + x*p/2)*(p^2 - q)); Vec(p)} \\ Andrew Howroyd, Feb 24 2021

Extensions

More terms from R. J. Mathar, Oct 29 2008
Name clarified and terms a(27) and beyond from Andrew Howroyd, Feb 24 2021

A007767 Number of pairs of permutations of degree n that avoid (12,21).

Original entry on oeis.org

1, 1, 3, 17, 151, 1899, 31711, 672697, 17551323, 549500451, 20246665349, 864261579999, 42190730051687, 2329965898878307, 144220683681814515, 9926440976428215117, 754465679498026783923, 62939664181821196179459, 5732069150321309755351161, 567176164248814234096702451
Offset: 0

Views

Author

Keywords

Comments

A pair of permutations (p,q) of degree n avoid (12,21) if there do not exist indices 1<=iNoam Zeilberger, Jun 06 2016 (via Steve Linton)
Number of intervals (i.e. ordered pairs (x,y) such that x<=y) in the permutation lattice of size n, that is, pairs of permutations (x,y) related by the weak Bruhat order x<=y iff inversions(x) is a subset of inversions(y) (see Hammett and Pittel, p. 4567). - Noam Zeilberger, Jun 01 2016

Crossrefs

Programs

  • Java
    // See Kapun link.

Formula

a(n) = Sum_{k=1..n!} k * A263754(n,k). - Alois P. Heinz, Jun 06 2016

Extensions

a(0)=1 prepended by Alois P. Heinz, Jun 06 2016
a(10)-a(13) from Evgeny Kapun, Dec 11 2016
More terms from Andrew Elvey Price, Feb 08 2024

A006391 Number of unsensed loopless planar maps with n edges.

Original entry on oeis.org

1, 1, 2, 5, 14, 45, 191, 871, 4682, 27336, 172706, 1150322, 7989004
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A006385, A000260 (rooted), A006390 (sensed).

Extensions

a(8)-a(12) from Sean A. Irvine, Mar 29 2017
a(0)=1 prepended by Andrew Howroyd, Jan 14 2025

A058859 Number of 1-connected rooted cubic planar maps with n faces.

Original entry on oeis.org

1, 3, 19, 143, 1089, 8564, 69075, 569469, 4783377, 40829748, 353395155, 3096104105, 27415923905, 245069538465, 2209155012387, 20064713628389, 183478258249569, 1688112897834496, 15618577076864579, 145242456429736935
Offset: 4

Views

Author

N. J. A. Sloane, Jan 06 2001; revised Feb 17 2006

Keywords

Crossrefs

Programs

  • Maple
    eq:=16*x^11*m^4+(-24*x^9+32*x^8+72*x^7)*m^3+(-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2+(-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m-x^2-11*x+1: m:=sum(A[j]*x^j,j=0..35): A[0]:=solve(subs(x=0,expand(eq))): for n from 1 to 35 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C:=(1-2*x-4*x^2)*x^4*m-2*x^8*m^2: Cser:=series(C,x=0,30): seq(coeff(Cser,x^n),n=4..26); # Emeric Deutsch, Nov 30 2005
  • PARI
    F = x^4*(1-2*x-4*x^2)*z - 2*x^8*z^2;
    G = 16*x^11*z^4 - 8*x^7*(3*x^2 - 4*x - 9)*z^3 - x^3*(15*x^4 + 108*x^3 + 194*x^2 + 92*x - 1)*z^2 -  (2*x^5 + 33*x^4 + 70*x^3 + 46*x^2 - 16*x + 1)*z - x^2 - 11*x + 1;
    Z(N) = {
      my(z0 = 1 + O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1); z0;
    };
    seq(N) = Vec(subst(F, 'z, Z(N)));
    seq(20)
    \\ test: y = Ser(seq(303))*'x^4; 0 == 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41)
    \\ Gheorghe Coserea, Jul 15 2018

Formula

G.f.: x^4*(1-2*x-4*x^2)*m-2*x^8*m^2, where m is defined by 16*x^11*m^4 + (-24*x^9+32*x^8+72*x^7)*m^3 + (-15*x^7-108*x^6-194*x^5-92*x^4+x^3)*m^2 + (-2*x^5-33*x^4-70*x^3-46*x^2+16*x-1)*m - x^2-11*x+1=0. - Emeric Deutsch, Nov 30 2005
From Gheorghe Coserea, Jul 16 2018: (Start):
G.f. y=A(x) satisfies:
0 = 64*y^4 + (912*x^4 + 640*x^3 + 384*x^2 + 3328*x + 2864)*y^3 - (1743*x^8 + 13968*x^7 + 13344*x^6 - 52888*x^5 - 116934*x^4 - 71248*x^3 - 4064*x^2 + 3768*x - 41)*y^2 + (784*x^12 + 13524*x^11 + 29478*x^10 - 51033*x^9 - 194686*x^8 - 166400*x^7 - 5454*x^6 + 43746*x^5 + 4030*x^4 - 5652*x^3 + 904*x^2 - 41*x)*y - x^5*(x^2 + 11*x - 1)*(1568*x^8 + 476*x^7 - 7456*x^6 - 8458*x^5 - 27*x^4 + 2672*x^3 + 130*x^2 - 330*x + 41).
0 = x*(4*x^2 + 8*x + 5)*(27*x^6 + 216*x^5 + 171*x^4 - 208*x^3 - 339*x^2 + 24*x + 1)*(53687232*x^17 + 962429472*x^16 + 4910442696*x^15 + 11262716564*x^14 + 13535708340*x^13 + 6699339314*x^12 - 8161216832*x^11 - 27707772057*x^10 - 38282906893*x^9 - 23841839272*x^8 + 3164178022*x^7 + 13551725887*x^6 + 6618789645*x^5 + 110368160*x^4 - 189595230*x^3 + 52114000*x^2 - 2282040*x - 80000)*y'''' - (23192884224*x^25 + 642325749120*x^24 + 7010404371072*x^23 + 38396140051536*x^22 + 119087871158520*x^21 + 209055666121344*x^20 + 149537518315396*x^19 - 179206877652920*x^18 - 594068689834972*x^17 - 713069283397760*x^16 - 388115755832091*x^15 + 185412410945637*x^14 + 709124462066474*x^13 + 898548947063912*x^12 + 629038710881040*x^11 + 159866881148998*x^10 - 107640739893374*x^9 - 101244290972424*x^8 - 23418947186993*x^7 + 3644481830365*x^6 + 957436398080*x^5 - 94641974160*x^4 + 1607421440*x^3 + 430075760*x^2 - 17060400*x - 400000)*y''' + (69578652672*x^24 + 1910859372288*x^23 + 21034975582656*x^22 + 114742977687936*x^21 + 350375920009560*x^20 + 585065268522672*x^19 + 317856584972580*x^18 - 736872920930424*x^17 - 1812132349221252*x^16 - 1696870248263700*x^15 - 376785528937023*x^14 + 1026609868750112*x^13 + 1799851001684942*x^12 + 1902275760186412*x^11 + 1364464778889680*x^10 + 504031822062384*x^9 - 75374914747162*x^8 - 173636873122824*x^7 - 67965626046313*x^6 - 3235617436480*x^5 + 1670710238920*x^4 - 60241392600*x^3 - 9066655340*x^2 + 1117875760*x + 15179600)*y'' - 12*(11596442112*x^23 + 315790249536*x^22 + 3414867276384*x^21 + 17899179378120*x^20 + 51714502467480*x^19 + 77928289056012*x^18 + 22675972179932*x^17 - 134244171463804*x^16 - 254323096657040*x^15 - 181481980531415*x^14 + 24427607774667*x^13 + 176309477492908*x^12 + 214672437288248*x^11 + 192416432064275*x^10 + 135698454441595*x^9 + 59484339948854*x^8 + 1838501691038*x^7 - 16090673029130*x^6 - 8704257466200*x^5 - 1085436408240*x^4 + 33590844600*x^3 - 6624333760*x^2 - 719889600*x - 8800000)*y' + 12*(11596442112*x^22 + 313103937024*x^21 + 3232316223360*x^20 + 15530584062240*x^19 + 39522162905640*x^18 + 45540724655832*x^17 - 16695945361396*x^16 - 123726467878420*x^15 - 152050336659260*x^14 - 49261893247550*x^13 + 73707236060447*x^12 + 119787972312984*x^11 + 115583117491500*x^10 + 95686381642950*x^9 + 56811985465335*x^8 + 13932882885644*x^7 - 9032398496482*x^6 - 8810946218840*x^5 - 1354608403560*x^4 + 47155824160*x^3 - 6777547760*x^2 - 855133760*x - 10609600)*y.
(End)

Extensions

More terms from Emeric Deutsch, Nov 30 2005

A058861 Number of 3-connected rooted cubic planar maps with n faces and girth at least 4.

Original entry on oeis.org

0, 0, 1, 3, 12, 59, 313, 1713, 9559, 54189, 311460, 1812281, 10661303, 63336873, 379601353, 2293205687, 13953099573, 85451824382, 526431271347, 3260689089300, 20296848348929, 126918850161182, 796981464813540
Offset: 4

Views

Author

N. J. A. Sloane, Jan 06 2001; revised Feb 17 2006

Keywords

Comments

Number of 3-connected triangle-free rooted cubic maps with n faces.

Crossrefs

Programs

  • Maple
    eq:=(x^3-3*x^2+3*x-1)*g^4+(4*x^4-12*x^3+9*x^2+2*x-3)*g^3+(6*x^5-10*x^4-15*x^3+36*x^2-14*x-3)*g^2+(4*x^6+4*x^5-45*x^4+82*x^3-59*x^2+14*x-1)*g+x^7+5*x^6-8*x^5+x^4: g:=sum(A[j]*x^j,j=1..37): for n from 1 to 37 do A[n]:=solve(coeff(expand(eq),x^n)=0) od: C3:=x^2*(1-3*x)*g: C3ser:=series(C3,x=0,34): seq(coeff(C3ser,x^n),n=6..30); # Emeric Deutsch, Nov 30 2005
  • PARI
    F = x^2*(1 - 3*x)*z;
    G = x^12*(x - 1)^3*z^4 + x^8*(x - 1)^2*(2*x - 3)*(2*x + 1)*z^3 + x^4*(x - 1)*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*z^2 + (4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*z + (x^3 + 5*x^2 - 8*x + 1);
    Z(N) = {
      my(z0 = 1 + O('x^N), z1=0, n=1);
      while (n++,
        z1 = z0 - subst(G, 'z, z0)/subst(deriv(G, 'z), 'z, z0);
        if (z1 == z0, break()); z0 = z1); z0;
    };
    seq(N) = concat([0, 0], Vec(subst(F, 'z, 'x^4*Z(N))));
    seq(21)
    \\ test: y = Ser(seq(303))*'x^4; 0 == (x - 1)^3*y^4 - x^2*(x - 1)^2*(2*x - 3)*(2*x + 1)*(3*x - 1)*y^3 + x^4*(x - 1)*(3*x - 1)^2*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*y^2 - x^6*(3*x - 1)^3*(4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*y + x^12*(3*x - 1)^4*(x^3 + 5*x^2 - 8*x + 1)
    \\ Gheorghe Coserea, Jul 15 2018

Formula

G.f.: x^2*(1-3*x)*g, where g is defined by (x^3-3*x^2+3*x-1)*g^4 + (4*x^4-12*x^3+9*x^2+2*x-3)*g^3 + (6*x^5-10*x^4-15*x^3+36*x^2-14*x-3)*g^2 + (4*x^6+4*x^5-45*x^4+82*x^3-59*x^2+14*x-1)*g + x^7+5*x^6-8*x^5+x^4=0. - Emeric Deutsch, Nov 30 2005
From Gheorghe Coserea, Jul 15 2018: (Start)
G.f. y=A(x) satisfies:
0 = (x - 1)^3*y^4 - x^2*(x - 1)^2*(2*x - 3)*(2*x + 1)*(3*x - 1)*y^3 + x^4*(x - 1)*(3*x - 1)^2*(6*x^4 - 4*x^3 - 19*x^2 + 17*x + 3)*y^2 - x^6*(3*x - 1)^3*(4*x^6 + 4*x^5 - 45*x^4 + 82*x^3 - 59*x^2 + 14*x - 1)*y + x^12*(3*x - 1)^4*(x^3 + 5*x^2 - 8*x + 1).
0 = x^4*(x - 1)^3*(3*x - 1)^4*(256*x^3 - 512*x^2 + 256*x - 27)*(660*x^5 - 2668*x^4 + 4177*x^3 - 3252*x^2 + 1305*x - 220)*y'''' - 4*x^3*(x - 1)^2*(3*x - 1)^3*(696960*x^10 - 5684352*x^9 + 19870624*x^8 - 39218578*x^7 + 48478923*x^6 - 39311914*x^5 + 21210466*x^4 - 7501069*x^3 + 1650104*x^2 - 201370*x + 10395)*y''' + 4*x^2*(x - 1)*(3*x - 1)^2*(7579440*x^12 - 77500656*x^11 + 341548428*x^10 - 862746936*x^9 + 1396393806*x^8 - 1530275829*x^7 + 1167408906*x^6 - 625929723*x^5 + 234247228*x^4 - 59616890*x^3 + 9784582*x^2 - 931830*x + 38940)*y'' - 24*x*(3*x - 1)*(8523900*x^14 - 105292620*x^13 + 561229815*x^12 - 1731677190*x^11 + 3479254732*x^10 - 4837165728*x^9 + 4815815835*x^8 - 3498631418*x^7 + 1868972298*x^6 - 732379803*x^5 + 207693098*x^4 - 41430916*x^3 + 5510394*x^2 - 438095*x + 15730)*y' + 24*(27442800*x^15 - 372895380*x^14 + 2140330050*x^13 - 7047776880*x^12 + 15074631336*x^11 - 22357962673*x^10 + 23891962029*x^9 - 18825921582*x^8 + 11080006886*x^7 - 4892373579*x^6 + 1614037497*x^5 - 392156906*x^4 + 68130318*x^3 - 8004294*x^2 + 569210*x - 18480)*y.
(End)

Extensions

More terms from Emeric Deutsch, Nov 30 2005

A103941 Number of unrooted loopless n-edge maps in the plane (planar with a distinguished outside face).

Original entry on oeis.org

1, 1, 2, 6, 22, 103, 614, 3872, 26414, 186988, 1367976, 10254326, 78461338, 610598818, 4821248244, 38546510368, 311560875422, 2542507084588, 20925300483992, 173530381632724, 1448900079476152, 12172334379246523, 102833593763830038, 873187910184763024, 7449120536014301138
Offset: 0

Views

Author

Valery A. Liskovets, Mar 17 2005

Keywords

References

  • V. A. Liskovets and T. R. Walsh, Enumeration of unrooted maps on the plane, Rapport technique, UQAM, No. 2005-01, Montreal, Canada, 2005.

Crossrefs

Programs

  • Mathematica
    a[n_] := (1/(2n)) (Binomial[4n, n]/(3n+1) + Sum[Boole[0 < k < n] EulerPhi[ n/k] Binomial[4k, k], {k, Divisors[n]}] + q[n]);
    q[n_] := If[EvenQ[n], 0, Binomial[2n, (n-1)/2]];
    Array[a, 20] (* Jean-François Alcover, Sep 01 2019 *)
  • PARI
    a(n) = {if(n==0, 1, (sumdiv(n, d, if(dAndrew Howroyd, Mar 28 2021

Formula

For n > 0, a(n) = (1/(2n))*[binomial(4n, n)/(3n+1) + Sum_{0A000010, q(n)=0 if n is even and q(n)=binomial(2n, (n-1)/2) if n is odd.

Extensions

a(0)=1 prepended and terms a(21) and beyond from Andrew Howroyd, Mar 28 2021
Previous Showing 21-30 of 48 results. Next