A063401
a(n) = a(n-1)*a(n-2)*a(n-3) with a(0)=1, a(1)=2, a(2)=2.
Original entry on oeis.org
1, 2, 2, 4, 16, 128, 8192, 16777216, 17592186044416, 2417851639229258349412352, 713623846352979940529142984724747568191373312, 30354201441027016733116592294117482916287606860189680019559568902170379456331382784
Offset: 0
-
a0=1;a1=1;a2=2;lst={a0,a1,a2};Do[AppendTo[lst,a=a0*a1*a2]; a0=a1;a1=a2;a2=a, {n,12}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 18 2009 *)
RecurrenceTable[{a[0]==1,a[1]==a[2]==2,a[n]==a[n-1]a[n-2]a[n-3]},a,{n,12}] (* Harvey P. Dale, Sep 05 2021 *)
-
{ for (n = 0, 15, if (n>2, a=a1*a2*a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=1; a1=a2=2, a=2)); write("b063401.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 20 2009
A174677
a(n) = 2*a(n-1)*a(n-2) with a(0)=1 and a(1)=1.
Original entry on oeis.org
1, 1, 2, 4, 16, 128, 4096, 1048576, 8589934592, 18014398509481984, 309485009821345068724781056, 11150372599265311570767859136324180752990208
Offset: 0
-
[2^(Fibonacci(n+1)-1): n in [0..10]]; // Vincenzo Librandi, Apr 24 2011
-
2^(Fibonacci[Range[15]] -1) (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011 *)
Join[{1}, RecurrenceTable[{a[1]==1,a[2]==2,a[n]==2a[n-1]a[n-2]},a[n],{n, 12}]] (* Harvey P. Dale, Jul 07 2011 *)
-
[2^(fibonacci(n+1) -1) for n in range(13)] # G. C. Greubel, Jul 30 2024
A011455
Sum 2^Fibonacci(i), i=2..n.
Original entry on oeis.org
2, 6, 14, 46, 302, 8494, 2105646, 17181974830, 36028814200938798, 618970019678718951650500910, 22300745198530623760505737951367313156481326, 13803492693581127574869511746854796103432841704846511061692361604079918
Offset: 2
Bagirath R. Krishnamachari (bagi(AT)miel.mot.com)
A061083
Fibonacci-type sequence based on division: a(0) = 1, a(1) = 2 and a(n) = a(n-2)/a(n-1) but ignore decimal point.
Original entry on oeis.org
1, 2, 5, 4, 125, 32, 390625, 8192, 476837158203125, 17179869184, 277555756156289135105907917022705078125, 618970019642690137449562112
Offset: 0
Ulrich Schimke (ulrschimke(AT)aol.com)
a(6) = 390625, since a(4)/a(5) = 125/32 = 3.90625
Cf.
A061084 for subtraction,
A000301 for multiplication and
A000045 for addition - the common Fibonacci numbers
-
a061083 n = a061083_list !! n
a061083_list = 1 : 2 : zipWith divIgnPnt a061083_list (tail a061083_list)
where divIgnPnt x y = ddiv (10 * m) x' where
ddiv u w | r == 0 = 10 * w + q
| otherwise = ddiv (10 * r) (10 * w + q)
where (q,r) = divMod u y
(x',m) = divMod x y
-- Reinhard Zumkeller, Dec 29 2011
A089983
1, 1, 1, 1, ... a, b, c, d, ab-cd, ...
Original entry on oeis.org
1, 1, 1, 1, 0, 1, 1, -1, 1, 2, -3, 5, 17, -91, 1532, 139497, -213710951, 29812036392235, 6371158648631364574889, -189937213493701003981668660072118562, 1210120120447335073097142485947209203511752911347585124133
Offset: 1
-
I:=[1,1,1,1]; [n le 4 select I[n] else -Self(n-1)*Self(n-2)+Self(n-3)*Self(n-4): n in [1..22]]; // Vincenzo Librandi, Mar 30 2014
-
nxt[{a_,b_,c_,d_}]:={b,c,d,a b-c d}; NestList[nxt,{1,1,1,1},20][[All,1]] (* Harvey P. Dale, Oct 30 2021 *)
-
a=b=c=d=1;for(n=5,20,e=a*b-c*d;a=b;b=c;c=d;d=e;print1(e,","))
A109213
Product of a(n-2) and digit reversal of a(n-1).
Original entry on oeis.org
1, 2, 2, 4, 8, 32, 184, 15392, 5400584, 74651892640, 25003708306137848, 6335942056759761366725617280, 20682199297864337408779128828731176793076928
Offset: 1
a(5)=8, a(6)=32, R(32)=23, hence a(7)=8*23=184; R(184)=841, a(8)=32*841=15392, etc.
-
a[1]=1;a[2]=2;a[n_]:=a[n]=a[n-2]*FromDigits[Reverse[IntegerDigits[a[n-1]]]]; A109213=Table[a[n], {n, 13}]
nxt[{a_,b_}]:={b,a*IntegerReverse[b]}; NestList[nxt,{1,2},15][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 09 2017 *)
A109214
Product of a(n-1) and digit reversal of a(n-2).
Original entry on oeis.org
1, 2, 2, 4, 8, 32, 256, 5888, 3838976, 34109301760, 231888097227054080, 1556059601911449331359933440, 125186119679477750610733678211850458005934080, 55507466796083630515105997822341552764197877620395801846452095434158080
Offset: 1
Cf.
A000301 (a(n) = a(n-1)*a(n-2)),
A004086 (R(n) = digit reversal of n),
A109213 (a(n) = a(n-2)*R(a(n-1))).
-
R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
a:= proc(n) option remember; `if`(n<3, n, a(n-1)*R(a(n-2))) end:
seq(a(n), n=1..14); # Alois P. Heinz, Sep 01 2025
-
a[1]=1;a[2]=2;a[n_]:=a[n]=a[n-1]*FromDigits[Reverse[IntegerDigits[a[n-2]]]]; A109214=Table[a[n], {n, 13}]
Transpose[NestList[{Last[#],Last[#]FromDigits[Reverse[ IntegerDigits[ First[ #]]]]}&,{1,2},13]][[1]] (* Harvey P. Dale, Nov 14 2011 *)
A111235
a(1)=a(2)=a(3)=a(4)=1. For n >= 5, a(n)= a(n-1)*a(n-2) + a(n-3)*a(n-4).
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 7, 23, 167, 3862, 645115, 2491437971, 1607264007306619, 4004398577225334507664179, 6436125704084114770053956998574742562466, 25772812612277833490303309040566300172816894832780792086674335463
Offset: 1
-
I:=[1,1,1,1]; [n le 4 select I[n] else Self(n-1)*Self(n-2) +Self(n-3)*Self(n-4): n in [1..16]]; // Vincenzo Librandi, Mar 30 2014
-
a:= proc(n) a(n):= `if`(n<5, 1, a(n-1)*a(n-2) +a(n-3)*a(n-4)) end:
seq(a(n), n=1..16); # Alois P. Heinz, Mar 30 2014
-
RecurrenceTable[{a[1]==a[2]==a[3]==a[4]==1,a[n]==a[n-1]a[n-2]+a[n-3] a[n-4]}, a,{n,20}] (* Harvey P. Dale, Jun 06 2017 *)
A275483
Numerators of Conway's FIBONACCIGAME.
Original entry on oeis.org
17, 133, 17, 23, 2233, 23, 31, 74, 31, 41, 129, 41, 13, 1, 1
Offset: 1
- Julian Havil, Nonplussed! Mathematical Proof of Implausible Ideas. Princeton: Princeton University Press (2007): 174.
A275484
Denominators of Conway's FIBONACCIGAME.
Original entry on oeis.org
65, 34, 19, 17, 69, 29, 23, 341, 37, 31, 287, 43, 41, 13, 3
Offset: 1
- Julian Havil, Nonplussed! Mathematical Proof of Implausible Ideas. Princeton: Princeton University Press (2007): 174.
Comments