cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 162 results. Next

A153649 Triangle T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+1)*prime(j)*T(n-2, k-1) with j=4, read by rows.

Original entry on oeis.org

2, 7, 7, 2, 94, 2, 2, 341, 341, 2, 2, 413, 3972, 413, 2, 2, 485, 16320, 16320, 485, 2, 2, 557, 31260, 171660, 31260, 557, 2, 2, 629, 48792, 774120, 774120, 48792, 629, 2, 2, 701, 68916, 1917012, 7556340, 1917012, 68916, 701, 2, 2, 773, 91632, 3693648, 36567552, 36567552, 3693648, 91632, 773, 2
Offset: 1

Views

Author

Roger L. Bagula, Dec 30 2008

Keywords

Examples

			Triangle begins as:
  2;
  7,   7;
  2,  94,     2;
  2, 341,   341,       2;
  2, 413,  3972,     413,        2;
  2, 485, 16320,   16320,      485,        2;
  2, 557, 31260,  171660,    31260,      557,       2;
  2, 629, 48792,  774120,   774120,    48792,     629,     2;
  2, 701, 68916, 1917012,  7556340,  1917012,   68916,   701,   2;
  2, 773, 91632, 3693648, 36567552, 36567552, 3693648, 91632, 773, 2;
		

Crossrefs

Sequences with variable (p,q,j): A153516 (0,1,2), A153518 (0,1,3), A153520 (0,1,4), A153521 (0,1,5), A153648 (1,0,3), this sequence (1,1,4), A153650 (1,4,5), A153651 (1,5,6), A153652 (2,1,7), A153653 (2,1,8), A153654 (2,1,9), A153655 (2,1,10), A153656 (2,3,9), A153657 (2,7,10).
Cf. A000420 (powers of 7).

Programs

  • Magma
    f:= func< n,j | Round(((3-(-1)^n)/2)*NthPrime(j)^(n-1) - 2^((3-(-1)^n)/2)) >;
    function T(n,k,p,q,j)
      if n eq 2 then return NthPrime(j);
      elif (n eq 3 and k eq 2 or n eq 4 and k eq 2 or n eq 4 and k eq 3) then return f(n,j);
      elif (k eq 1 or k eq n) then return 2;
      else return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*NthPrime(j)*T(n-2,k-1,p,q,j);
      end if; return T;
    end function;
    [T(n,k,1,1,4): k in [1..n], n in [1..12]]; // G. C. Greubel, Mar 04 2021
  • Mathematica
    T[n_, k_, p_, q_, j_]:= T[n,k,p,q,j]= If[n==2, Prime[j], If[n==3 && k==2 || n==4 && 2<=k<=3, ((3-(-1)^n)/2)*Prime[j]^(n-1) -2^((3-(-1)^n)/2), If[k==1 || k==n, 2, T[n-1,k,p,q,j] + T[n-1,k-1,p,q,j] + (p*j+q)*Prime[j]*T[n-2,k-1,p,q,j] ]]];
    Table[T[n,k,1,1,4], {n,12}, {k,n}]//Flatten (* modified by G. C. Greubel, Mar 04 2021 *)
  • Sage
    @CachedFunction
    def f(n,j): return ((3-(-1)^n)/2)*nth_prime(j)^(n-1) - 2^((3-(-1)^n)/2)
    def T(n,k,p,q,j):
        if (n==2): return nth_prime(j)
        elif (n==3 and k==2 or n==4 and 2<=k<=3): return f(n,j)
        elif (k==1 or k==n): return 2
        else: return T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*nth_prime(j)*T(n-2,k-1,p,q,j)
    flatten([[T(n,k,1,1,4) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Mar 04 2021
    

Formula

T(n, k) = T(n-1, k) + T(n-1, k-1) + (j+1)*prime(j)*T(n-2, k-1) with j=4.
From G. C. Greubel, Mar 04 2021: (Start)
T(n,k,p,q,j) = T(n-1,k,p,q,j) + T(n-1,k-1,p,q,j) + (p*j+q)*prime(j)*T(n-2,k-1,p,q,j) with T(2,k,p,q,j) = prime(j), T(3,2,p,q,j) = 2*prime(j)^2 -4, T(4,2,p,q,j) = T(4,3,p,q,j) = prime(j)^2 -2, T(n,1,p,q,j) = T(n,n,p,q,j) = 2 and (p,q,j) = (1,1,4).
Sum_{k=0..n} T(n,k,p,q,j) = 2*prime(j)^(n-1), for (p,q,j)=(1,1,4), = 2*A000420(n-1). (End)

Extensions

Edited by G. C. Greubel, Mar 04 2021

A008568 Digits of powers of 7.

Original entry on oeis.org

1, 7, 4, 9, 3, 4, 3, 2, 4, 0, 1, 1, 6, 8, 0, 7, 1, 1, 7, 6, 4, 9, 8, 2, 3, 5, 4, 3, 5, 7, 6, 4, 8, 0, 1, 4, 0, 3, 5, 3, 6, 0, 7, 2, 8, 2, 4, 7, 5, 2, 4, 9, 1, 9, 7, 7, 3, 2, 6, 7, 4, 3, 1, 3, 8, 4, 1, 2, 8, 7, 2, 0, 1, 9, 6, 8, 8, 9, 0, 1, 0, 4, 0, 7, 6, 7, 8, 2, 2, 3, 0, 7, 2, 8, 4, 9, 4, 7, 4
Offset: 0

Views

Author

Keywords

Comments

Irregular table with row length sequence A210062. - Jason Kimberley, Nov 26 2012
The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  7;
  4, 9;
  3, 4, 3;
  2, 4, 0, 1;
  1, 6, 8, 0, 7;
  1, 1, 7, 6, 4, 9;
  8, 2, 3, 5, 4, 3;
  ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[IntegerDigits[7^Range[0,20]]]  (* Harvey P. Dale, Mar 03 2011 *)

A087752 Powers of 49.

Original entry on oeis.org

1, 49, 2401, 117649, 5764801, 282475249, 13841287201, 678223072849, 33232930569601, 1628413597910449, 79792266297612001, 3909821048582988049, 191581231380566414401, 9387480337647754305649, 459986536544739960976801, 22539340290692258087863249, 1104427674243920646305299201
Offset: 0

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 02 2003

Keywords

Comments

Same as Pisot sequences E(1, 49), L(1, 49), P(1, 49), T(1, 49). Essentially same as Pisot sequences E(49, 2401), L(49, 2401), P(49, 2401), T(49, 2401). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 49-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Bisection of A000420.
Cf. A001018 (powers of 8), ..., A001029 (powers of 19), A009964 (powers of 20), ..., A009992 (powers of 48).

Programs

Formula

G.f.: 1/(1-49*x). - Philippe Deléham, Nov 24 2008
From Vincenzo Librandi, Nov 21 2010: (Start)
a(n) = 49^n.
a(n) = 49*a(n-1), a(0)=1. (End)
From Elmo R. Oliveira, Jul 08 2025: (Start)
E.g.f.: exp(49*x).
a(n) = A000420(A005843(n)). (End)

Extensions

Edited by M. F. Hasler, Apr 19 2015

A009972 Powers of 28.

Original entry on oeis.org

1, 28, 784, 21952, 614656, 17210368, 481890304, 13492928512, 377801998336, 10578455953408, 296196766695424, 8293509467471872, 232218265089212416, 6502111422497947648, 182059119829942534144, 5097655355238390956032, 142734349946674946768896, 3996561798506898509529088
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(1, 28), L(1, 28), P(1, 28), T(1, 28). Essentially same as Pisot sequences E(28, 784), L(28, 784), P(28, 784), T(28, 784). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 28-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Crossrefs

Programs

Formula

G.f.: 1/(1-28*x). - Philippe Deléham, Nov 24 2008
a(n) = 28^n; a(n) = 28*a(n-1), n > 0, a(0) = 1. - Vincenzo Librandi, Nov 21 2010
From Elmo R. Oliveira, Jul 10 2025: (Start)
E.g.f.: exp(28*x).
a(n) = A000079(n)*A001023(n) = A000302(n)*A000420(n). (End)

A038255 Triangle whose (i,j)-th entry is binomial(i,j)*6^(i-j).

Original entry on oeis.org

1, 6, 1, 36, 12, 1, 216, 108, 18, 1, 1296, 864, 216, 24, 1, 7776, 6480, 2160, 360, 30, 1, 46656, 46656, 19440, 4320, 540, 36, 1, 279936, 326592, 163296, 45360, 7560, 756, 42, 1, 1679616, 2239488, 1306368, 435456, 90720, 12096, 1008
Offset: 0

Views

Author

Keywords

Comments

T(n,k) = A013613(n,n-k), 0 <= k <= n. - Reinhard Zumkeller, Nov 21 2013

Examples

			1
6, 1
36, 12, 1
216, 108, 18, 1
1296, 864, 216, 24, 1
7776, 6480, 2160, 360, 30, 1
46656, 46656, 19440, 4320, 540, 36, 1
279936, 326592, 163296, 45360, 7560, 756, 42, 1
1679616, 2239488, 1306368, 435456, 90720, 12096, 1008, 48, 1
		

Crossrefs

Cf. A038207.
Cf. A000420 (row sums), A013613 (mirrored), A110440, A007318, A000400.

Programs

  • Haskell
    a038255 n k = a038255_tabl !! n !! k
    a038255_row n = a038255_tabl !! n
    a038255_tabl = map reverse a013613_tabl
    -- Reinhard Zumkeller, Nov 21 2013
  • Maple
    for i from 0 to 8 do seq(binomial(i, j)*6^(i-j), j = 0 .. i) od; # Zerinvary Lajos, Dec 21 2007
  • Mathematica
    Table[Binomial[n,m]6^(n-m),{n,0,10},{m,0,n}]//Flatten (* Harvey P. Dale, Dec 25 2019 *)

Formula

G.f.: 1/(1 - 6*x - x*y). - Ilya Gutkovskiy, Apr 21 2017

A222462 T(n,k) = number of n X k 0..7 arrays with no entry increasing mod 8 by 7 rightwards or downwards, starting with upper left zero.

Original entry on oeis.org

1, 7, 7, 49, 301, 49, 343, 12943, 12943, 343, 2401, 556549, 3418807, 556549, 2401, 16807, 23931607, 903055069, 903055069, 23931607, 16807, 117649, 1029059101, 238535974201, 1465295106499, 238535974201, 1029059101, 117649, 823543
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2013

Keywords

Comments

1/8 the number of 8-colorings of the grid graph P_n X P_k. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
......1.............7..................49........................343
......7...........301...............12943.....................556549
.....49.........12943.............3418807..................903055069
....343........556549...........903055069..............1465295106499
...2401......23931607........238535974201...........2377584520856755
..16807....1029059101......63007686842527........3857863258420747009
.117649...44249541343...16643060295393343.....6259760185235726701945
.823543.1902730277749.4396153388210813341.10157072698503130798653535
...
Some solutions for n=3, k=4:
..0..4..2..3....0..0..0..4....0..4..6..1....0..4..0..4....0..2..6..2
..0..0..5..6....0..0..4..6....0..0..1..5....0..0..6..0....0..0..2..3
..0..0..0..1....0..0..5..1....0..0..3..5....0..0..0..1....0..0..3..5
		

Crossrefs

Columns 1-5 are A000420(n-1), 7*43^(n-1), A222459, A222460, A222461.
Main diagonal is A068258.
Cf. A078099 (3 colorings), A222444 (4 colorings), A222144 (5 colorings), A222281 (6 colorings), A222340 (7 colorings), A198914 (unlabeled 8 colorings).

Formula

T(n, k) = 7 * (720*A198914(n,k) - 360*A198982(n,k) - 240*A198906(n,k) - 90*A198715(n,k) - 24*A207997(n,k) - 5) for n*k > 1. - Andrew Howroyd, Jun 27 2017
Empirical for column k:
k=1: a(n) = 7*a(n-1).
k=2: a(n) = 43*a(n-1).
k=3: a(n) = 270*a(n-1) - 1547*a(n-2).
k=4: a(n) = 1689*a(n-1) - 108775*a(n-2) + 1672631*a(n-3).
k=5: a(n) = 10754*a(n-1) - 8060499*a(n-2) + 2219242223*a(n-3) - 245682627864*a(n-4) + 5798947687589*a(n-5) + 448113231493438*a(n-6) - 2763020698450992*a(n-7).

A379300 Number of prime indices of n that are composite.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 2, 0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Dec 25 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 1.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 3.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 3.
		

Crossrefs

Positions of first appearances are A000420.
Positions of zero are A302540, counted by A034891 (strict A036497).
Positions of one are A379301, counted by A379302 (strict A379303).
A000040 lists the prime numbers, differences A001223.
A002808 lists the composite numbers, nonprimes A018252, differences A073783 or A065310.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A066247 is the characteristic function for the composite numbers.
A377033 gives k-th differences of composite numbers, see A073445, A377034-A377037.
Other counts of prime indices:
- A087436 postpositive, see A038550.
- A330944 nonprime, see A002095, A096258, A320628, A330945.
- A379306 squarefree, see A302478, A379308, A379309, A379316.
- A379310 nonsquarefree, see A114374, A256012, A379307.
- A379311 old prime, see A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],CompositeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A066247(k).

A075502 Triangle read by rows: Stirling2 triangle with scaled diagonals (powers of 7).

Original entry on oeis.org

1, 7, 1, 49, 21, 1, 343, 343, 42, 1, 2401, 5145, 1225, 70, 1, 16807, 74431, 30870, 3185, 105, 1, 117649, 1058841, 722701, 120050, 6860, 147, 1, 823543, 14941423, 16235562, 4084101, 360150, 13034, 196, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the D. E. Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(7*z) - 1)*x/7) - 1.

Examples

			[1]; [7,1]; [49,21,1]; ...; p(3,x) = x * (49 + 21*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*      1
*      7        1
*     49       21        1
*    343      343       42       1
*   2401     5145     1225      70      1
*  16807    74431    30870    3185    105     1
* 117649  1058841   722701  120050   6860   147   1
* 823543 14941423 16235562 4084101 360150 13034 196 1
(End)
		

Crossrefs

Columns 1-7 are A000420, A075921-A075925, A076002. Row sums are A075506.

Programs

  • Mathematica
    Flatten[Table[7^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(7^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (7^(n-m)) * stirling2(n, m).
a(n, m) = 7*m*a(n-1, m) + a(n-1, m-1), n>=m>=1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*7)^(n-m))/(m-1)! for n >= m >= 1, else 0.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-7*k*x), m >= 1.
E.g.f. for m-th column: (((exp(7*x)-1)/7)^m)/m!, m >= 1.

A339687 a(n) = Sum_{d|n} 7^(d-1).

Original entry on oeis.org

1, 8, 50, 351, 2402, 16864, 117650, 823894, 5764851, 40356016, 282475250, 1977343950, 13841287202, 96889128064, 678223075300, 4747562333837, 33232930569602, 232630519768872, 1628413597910450, 11398895225729502, 79792266297729700, 558545864365759264
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 7 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), this sequence (q=7), A339688 (q=8), A339689 (q=9).

Programs

  • Magma
    A339687:= func< n | (&+[7^(d-1): d in Divisors(n)]) >;
    [A339687(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[7^(d - 1), {d, Divisors[n]}], {n, 1, 22}]
    nmax = 22; CoefficientList[Series[Sum[x^k/(1 - 7 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 7^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339687(n): return sum(7^(k-1) for k in (1..n) if (k).divides(n))
    [A339687(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 7*x^k).
G.f.: Sum_{k>=1} 7^(k-1) * x^k / (1 - x^k).
a(n) ~ 7^(n-1). - Vaclav Kotesovec, Jun 05 2021

A379310 Number of nonsquarefree prime indices of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Dec 27 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 39 are {2,6}, so a(39) = 0.
The prime indices of 70 are {1,3,4}, so a(70) = 1.
The prime indices of 98 are {1,4,4}, so a(98) = 2.
The prime indices of 294 are {1,2,4,4}, a(294) = 2.
The prime indices of 1911 are {2,4,4,6}, so a(1911) = 2.
The prime indices of 2548 are {1,1,4,4,6}, so a(2548) = 2.
		

Crossrefs

Positions of first appearances are A000420.
Positions of zero are A302478, counted by A073576 (strict A087188).
No squarefree parts: A379307, counted by A114374 (strict A256012).
One squarefree part: A379316, counted by A379308 (strict A379309).
A000040 lists the primes, differences A001223.
A005117 lists the squarefree numbers, differences A076259.
A008966 is the characteristic function for the squarefree numbers.
A013929 lists the nonsquarefree numbers, differences A078147.
A055396 gives least prime index, greatest A061395.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061398 counts squarefree numbers between primes, zeros A068360.
A377038 gives k-th differences of squarefree numbers.
Other counts of prime indices:
- A330944 nonprime, see A000586, A000607, A076610, A330945.
- A379311 old prime, see A204389, A320629, A379312-A379315.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[prix[n],Not@*SquareFreeQ]],{n,100}]

Formula

Totally additive with a(prime(k)) = A107078(k) = 1 - A008966(k).
Previous Showing 21-30 of 162 results. Next