cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 162 results. Next

A014831 a(1)=1; for n>1, a(n) = 8*a(n-1) + n.

Original entry on oeis.org

1, 10, 83, 668, 5349, 42798, 342391, 2739136, 21913097, 175304786, 1402438299, 11219506404, 89756051245, 718048409974, 5744387279807, 45955098238472, 367640785907793, 2941126287262362, 23529010298098915, 188232082384791340, 1505856659078330741, 12046853272626645950
Offset: 1

Views

Author

Keywords

Examples

			For n=5, a(5) = 1*15 + 7*20 + 7^2*15 + 7^3*6 + 7^4*1 = 5349. [_Bruno Berselli_, Nov 13 2015]
		

Crossrefs

Programs

  • Maple
    a:=n->sum((8^(n-j)-1)/7,j=0..n): seq(a(n), n=1..19); # Zerinvary Lajos, Jan 15 2007
    a:= n-> (Matrix ([[1, 0, 1], [1, 1, 1], [0, 0, 8]])^n)[2, 3]: seq (a(n), n=1..25); # Alois P. Heinz, Aug 06 2008
  • Mathematica
    Table[(8^(n + 1) - 7 n - 8)/49, {n, 1, 25}] (* Bruno Berselli, Nov 13 2015 *)
    nxt[{n_,a_}]:={n+1,8a+n+1}; NestList[nxt,{1,1},30][[;;,2]] (* Harvey P. Dale, Aug 09 2025 *)
  • PARI
    Vec(x/((1 - x)^2*(1 - 8*x)) + O(x^25)) \\ Colin Barker, Jun 03 2020

Formula

a(n) = (8^(n+1) - 7*n - 8)/49. - Rolf Pleisch, Oct 21 2010
a(n) = Sum_{i=0..n-1} 7^i*binomial(n+1,n-1-i). - Bruno Berselli, Nov 13 2015
From Colin Barker, Jun 03 2020: (Start)
G.f.: x/((1 - x)^2*(1 - 8*x)).
a(n) = 10*a(n-1) - 17*a(n-2) + 8*a(n-3) for n > 3. (End)
E.g.f.: exp(x)*(8*exp(7*x) - 7*x - 8)/49. - Elmo R. Oliveira, Mar 29 2025

A049305 Numbers k such that k is a substring of 7^k.

Original entry on oeis.org

3, 4, 6, 8, 12, 15, 20, 40, 42, 43, 50, 53, 55, 59, 60, 61, 62, 69, 72, 73, 74, 75, 78, 79, 80, 81, 83, 86, 87, 88, 89, 93, 94, 95, 96, 97, 99, 100, 103, 111, 113, 114, 118, 164, 165, 185, 193, 200, 207, 210, 215, 220, 230, 232, 238, 241, 243, 250, 253, 254, 255
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Python
    def ok(n): return str(n) in str(7**n)
    print(list(filter(ok, range(256)))) # Michael S. Branicky, Aug 13 2021

A067504 Powers of 7 with digit sum also a power of 7.

Original entry on oeis.org

1, 7, 2401, 1977326743
Offset: 1

Views

Author

Amarnath Murthy, Feb 11 2002

Keywords

Comments

Next terms are 7^4433, 7^30810. - Sascha Kurz, Mar 18 2002

Crossrefs

Subsequence of A000420.

A138973 a(n) = 8^n mod 7^n.

Original entry on oeis.org

0, 1, 15, 169, 1695, 15961, 26846, 450066, 5247614, 13156907, 226316077, 680627620, 13354327932, 65310761853, 328708074010, 1951441519231, 15611532153848, 158125187800385, 101848932467045, 7328445851378156, 35829776440278962, 286638211522231696
Offset: 0

Views

Author

N. J. A. Sloane, May 20 2008

Keywords

Crossrefs

Cf. k^n mod (k-1)^n: A002380 (k=3), A064629 (k=4), A138589 (k=5), A138649 (k=6), A139786 (k=7), this sequence (k=8), A139733 (k=9).

Programs

  • Mathematica
    a[n_]:=PowerMod[8,n,7^n];Array[a,22,0] (* James C. McMahon, Jun 23 2025 *)
  • PARI
    a(n) = lift(Mod(8, 7^n)^n); \\ Michel Marcus, Feb 20 2018
  • Sage
    [power_mod(8,n,7^n) for n in range(0,22)] # Zerinvary Lajos, Nov 28 2009
    

A177805 Numbers k such that k divides 15^k - 1.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 28, 32, 49, 56, 64, 98, 112, 128, 136, 196, 224, 256, 272, 343, 392, 448, 452, 512, 544, 686, 784, 812, 896, 904, 952, 1024, 1088, 1372, 1568, 1624, 1792, 1808, 1904, 2048, 2176, 2312, 2401, 2744, 3136, 3164, 3248, 3584, 3616, 3808, 4096
Offset: 1

Views

Author

Alexander Adamchuk, May 17 2010

Keywords

Comments

A000420 are the only odd terms of the sequence. - Robert Israel, Feb 25 2020

Crossrefs

Programs

A239012 Exponents m such that the decimal expansion of 7^m exhibits its first zero from the right later than any previous exponent.

Original entry on oeis.org

0, 2, 3, 6, 10, 11, 19, 35, 127, 131, 175, 207, 1235, 2470, 2651, 1241310, 1922910, 471056338, 1001431598, 1720335627, 4203146094, 5353516238, 21838571507, 25770284079, 40822793867
Offset: 1

Views

Author

Keywords

Comments

Assume that a zero precedes all decimal expansions. This will take care of those cases in A030703.
Inspired by the seqfan list discussion Re: "possible sequence", beginning with David Wilson 7:57 PM Mar 06 2014 and continued by M. F. Hasler, Allan C. Wechsler and Franklin T. Adams-Watters.

Crossrefs

Programs

  • Mathematica
    f[n_] := Position[ Reverse@ Join[{0}, IntegerDigits[ PowerMod[7, n, 10^500]]], 0, 1, 1][[1, 1]]; k = mx = 0; lst = {}; While[k < 500000001, c = f[k]; If[c > mx, mx = c; AppendTo[ lst, k]; Print@ k]; k++]; lst

Extensions

a(19)-a(22) from Bert Dobbelaere, Jan 21 2019
a(23)-a(25) from Chai Wah Wu, Jan 15 2020

A268354 Highest power of 7 dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 49, 1, 1, 1, 1, 1, 1, 7
Offset: 1

Views

Author

Tom Edgar, Feb 02 2016

Keywords

Comments

The generalized binomial coefficients produced by this sequence provide an analog to Kummer's Theorem using arithmetic in base 7.

Examples

			Since 14 = 7 * 2, a(14) = 7. Likewise, since 7 does not divide 13, a(13) = 1.
		

Crossrefs

Programs

  • Magma
    [7^Valuation(n,7): n in [1..150]]; // Vincenzo Librandi, Feb 03 2016
    
  • Mathematica
    7^Table[IntegerExponent[n, 7], {n, 150}] (* Vincenzo Librandi, Feb 03 2016 *)
  • PARI
    a(n) = 7^valuation(n, 7) \\ Michel Marcus, Feb 05 2016
  • Sage
    [7^valuation(i, 7) for i in [1..100]]
    

Formula

a(n) = 7^valuation(n,7).
a(n) = 7^A214411(n).
Completely multiplicative with a(7) = 7, a(p) = 1 for prime p and p <> 7. - Andrew Howroyd, Jul 20 2018
From Peter Bala, Feb 21 2019: (Start)
a(n) = gcd(n,7^n).
a(n) = n/A242603(n).
O.g.f.: x/(1 - x) + 6*Sum_{n >= 1} 7^(n-1)*x^(7^n)/ (1 - x^(7^n)). (End)
Sum_{k=1..n} a(k) ~ (6/(7*log(7)))*n*log(n) + (4/7 + 6*(gamma-1)/(7*log(7)))*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 15 2022
Dirichlet g.f.: zeta(s)*(7^s-1)/(7^s-7). - Amiram Eldar, Jan 03 2023

Extensions

More terms from Antti Karttunen, Dec 22 2017

A288245 Irregular triangle read by rows of normalized Girard-Waring formula (cf. A210258), for m=7 data values.

Original entry on oeis.org

1, 7, -6, 49, -63, 15, 343, -588, 140, 126, -20, 2401, -5145, 1225, 2205, -175, -525, 15, 16807, -43218, 10290, 27783, -1470, -8820, 126, -2646, 630, 525, -6, 117649, -352947, 84035, 302526, -12005, -108045, 1029, -64827, 10290, 8575, -49, 15435, -441, -1225, 1
Offset: 1

Views

Author

Gregory Gerard Wojnar, Jun 06 2017

Keywords

Comments

Let SM_k = Sum( d_(t_1, t_2, t_3, ..., t_7)* eM_1^t_1 * eM_2^t_2 * ... * eM_7^t_7) summed over all length 7 integer partitions of k, i.e., 1*t_1 + 2*t_2 + 3*t_3 + ... + 7*t_7 = k, where SM_k are the averaged k-th power sum symmetric polynomials in 7 data (i.e., SM_k = S_k/7 where S_k are the k-th power sum symmetric polynomials, and where eM_k are the averaged k-th elementary symmetric polynomials, eM_k = e_k/binomial(7,k) with e_k being the k-th elementary symmetric polynomials. The data d_(t_1, t_2, t_3, ..., t_7) form a triangle, with one row for each k value starting with k=1; the number of terms in successive rows is nondecreasing.
Row sums of positive entries give 1,7,64,609,5846,56161,... Row sums of negative entries are always 1 less than corresponding row sums of positive entries.

Examples

			Triangular array begins...
1;
7,-6;
49,-63,15;
343,-588,140,126,-20;
2401,-5145,1225,2205,-175,-525,15;
16807,-43218,10290,27783,-1470,-8820,126,-2646,630,525,-6;
117649,-352947,84035,302526,-12005,-108045,1029,64827,10290,8575,-49,15435,-441,-1225,1;
		

Crossrefs

Cf. A028297 (m=2), A287768 (m=3), A288199 (m=4), A288211 (m=5), A288211 (m=6), A288188 (m=8). Also see Girard-Waring A210258.
First entries of each row of triangle are powers of m=7, A000420.

Programs

  • Java
    // See Wojnar link.

A367247 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 6.

Original entry on oeis.org

0, 7, 131, 1609, 16415, 150817, 1296191, 10641169, 84520175, 654958177, 4980233951, 37312922929, 276288797135, 2026564724737, 14750977566911, 106695818055889, 767748717541295, 5500729672814497, 39270143125479071, 279511731951144049, 1984459091985376655, 14059238393314971457
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366963.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{18,-107,210},{0,7,131},22]

Formula

a(n) = 27*7^(n-1) - 47*6^(n-1) + 4*5^n.
a(n) = 21*a(n-1) - 146*a(n-2) + 336*a(n-3) for n > 3.
O.g.f.: x^2*(7 + 5*x)/((1 - 5*x)*(1 - 6*x)*(1 - 7*x)).
E.g.f.: (162*exp(7*x) - 329*exp(6*x) + 168*exp(5*x) - 1)/42.

A367248 a(n) is the number of n-digit numbers whose difference between the largest and smallest digits is equal to 7.

Original entry on oeis.org

0, 5, 111, 1601, 19095, 204545, 2045511, 19508081, 179752215, 1613908385, 14202967911, 123028446161, 1052237271735, 8907026785025, 74758478722311, 623053865857841, 5162154289325655, 42558224511290465, 349394287423788711, 2858263098464575121, 23311522539676521975
Offset: 1

Views

Author

Stefano Spezia, Nov 11 2023

Keywords

Comments

a(n) is the number of n-digit numbers in A366964.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{21,-146,336},{0,5,111},21]

Formula

a(n) = 23*8^(n-1) - 41*7^(n-1) + 3*6^n.
a(n) = 21*a(n-1) - 146*a(n-2) + 336*a(n-3) for n > 3.
O.g.f.: x^2*(5 + 6*x)/((1 - 6*x)*(1 - 7*x)*(1 - 8*x)).
E.g.f.: (161*exp(8*x) - 328*exp(7*x) + 168*exp(6*x) - 1)/56.
Previous Showing 41-50 of 162 results. Next