cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 72 results. Next

A116505 Number of distinct prime divisors of the concatenation of 1..n.

Original entry on oeis.org

0, 2, 2, 2, 3, 3, 2, 4, 3, 3, 6, 4, 3, 3, 3, 3, 4, 5, 6, 6, 8, 6, 4, 5, 4, 6, 5, 5, 4, 7, 3, 5, 6, 2, 7, 5, 4, 4, 6, 8, 5, 7, 4, 4, 9, 7, 5, 7, 6, 9, 3, 3, 4, 9, 5, 4, 6, 4, 4, 6, 3, 7, 4, 9, 6, 8, 3, 7, 7, 6, 5, 5, 3, 9, 5, 4, 5, 6, 6, 7, 4, 7, 6, 3, 5, 7, 6, 5, 9, 8, 6, 6, 7, 5, 6, 5, 2, 9, 5, 9
Offset: 1

Views

Author

Parthasarathy Nambi, Mar 20 2006

Keywords

Comments

Dario Alpern's factorization program was used for n > 43.

Examples

			123456 = 2*2*2*2*2*2*3*643, with distinct prime divisors 2, 3 and 643. Hence, a(6) = 3.
		

Crossrefs

Programs

  • Mathematica
    Table[PrimeNu[FromDigits[Flatten[IntegerDigits[Range[n]]]]], {n, 30}] (* Jan Mangaldan, Jul 07 2020 *)
  • PARI
    {a="";for(n=1,43,a=concat(a,n);print1(omega(eval(a)),", "))}

Extensions

Edited and extended by Klaus Brockhaus, Mar 29 2006
Terms 59-100 from Sean A. Irvine, Nov 04 2009

A075019 a(1) = 1; for n > 1, a(n) = the smallest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 2, 3, 2, 3, 2, 127, 2, 3, 2, 3, 2, 113, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 29, 2, 3, 2, 3, 2, 71, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 23, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 10386763, 2, 3, 2, 3, 2, 397, 2, 3, 2, 3, 2, 37907, 2, 3, 2, 3, 2, 73, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 37, 2, 3, 2
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Comments

Least prime factor of A007908(n). For 1 < n <= 5000, a(n) < A007908(n), but this should fail infinitely often (assuming standard heuristics). - Charles R Greathouse IV, Apr 10 2014
From Robert Israel, Aug 28 2015: (Start)
a(n) = 2 iff n is even.
a(n) = 3 iff n == 3 or 5 (mod 6).
a(n) = 5 iff n == 25 (mod 30). (End)

Examples

			a(5)= 3, 3 is the smallest prime divisor of 12345.
		

Crossrefs

Programs

  • Maple
    C:= 1: A[1]:= 1:
    for n from 2 to 100 do
    C:= C*10^(1+ilog10(n))+n;
    F:= map(t -> t[1],ifactors(C,'easy')[2]);
    if hastype(F,integer) then A[n]:= min(select(type,F,integer))
    else A[n]:= min(numtheory:-factorset(C))
    fi
    od:
    seq(A[n],n=1..100); # Robert Israel, Aug 28 2015
  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, Length[w]}]; p = FromDigits[a]; AppendTo[b,First[First[FactorInteger[ p]]]], {n, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
  • PARI
    lpf(n)=forprime(p=2,1e3,if(n%p==0,return(p))); factor(n)[1,1]
    print1(N=1);for(n=2,100,N=N*10^#Str(n)+n; print1(", "lpf(N))) \\ Charles R Greathouse IV, Apr 10 2014

Extensions

More terms from Sascha Kurz, Jan 03 2003

A138789 a(n) = number of distinct prime divisors of A104759(n).

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 4, 4, 2, 5, 4, 2, 3, 7, 4, 4, 3, 3, 2, 5, 3, 5, 2, 3, 6, 6, 3, 3, 5, 5, 7, 3, 3, 4, 3, 3, 4, 4, 5, 3, 5, 7, 3, 5, 6, 6, 5, 4, 5, 2, 6, 4, 6, 4, 4, 7, 6, 5, 5, 6, 9, 5, 5, 7, 5, 5, 5, 5, 6, 6, 4, 4, 4, 5, 8, 7, 6, 4, 5, 4, 4, 9
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008

Keywords

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, 50}]; Table[Length[FactorInteger[FromDigits[Reverse[lst[[Range[1,n]]]]]]], {n, 1, Length[lst]}] (* Robert Price, Mar 24 2015 *)

Formula

a(n) = A001221(A104759(n)). - Michel Marcus, Jun 30 2024

Extensions

Entire sequence corrected by Robert Price, Mar 24 2015
More terms from Sean A. Irvine, Jul 21 2024

A138793 a(n) = concatenation of reversed digits of natural numbers from n down to 1.

Original entry on oeis.org

1, 21, 321, 4321, 54321, 654321, 7654321, 87654321, 987654321, 1987654321, 1101987654321, 211101987654321, 31211101987654321, 4131211101987654321, 514131211101987654321, 61514131211101987654321, 7161514131211101987654321
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008, Apr 04 2008

Keywords

Comments

Note that leading zeros are not omitted when writing down digits in reversed order. So 10 reversed becomes 01. - N. J. A. Sloane, Jan 23 2017

Crossrefs

Programs

  • Magma
    [Seqint(&cat[Reverse(Intseq(k)): k in [1..n]]): n in [1..16]]; // Bruno Berselli, May 27 2011
    
  • Maple
    read(transforms): A138793 := proc(n) return digrev(parse(cat($(1..n)))): end: seq(A138793(n),n=1..17); # Nathaniel Johnston, Jun 26 2011
  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, p], {n, 1, 61}]; b (* Artur Jasinski, Mar 30 2008 *)
    lst = {}; Table[FromDigits[Reverse[lst = Join[lst, IntegerDigits[n]]]], {n, 1, 15}] (* Robert Price, Mar 22 2015 *)
  • PARI
    a(n) = my(s = ""); forstep (k=n,1,-1, sk = digits(k); forstep (j=#sk, 1, -1, s = concat(s, sk[j]))); eval(s); \\ Michel Marcus, Jan 28 2017

A138790 Numbers k such that A138793(k) is prime.

Original entry on oeis.org

61, 946
Offset: 1

Views

Author

Artur Jasinski, Mar 30 2008, Mar 31 2008

Keywords

Comments

There are no more primes for k <= 5000.
a(3) > 20000. - Robert Price, Mar 24 2015

Examples

			a(1) = 61 because the number 160695...654321 is prime.
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; If[PrimeQ[p], Print[n]; AppendTo[b, p]], {n, 1, 2000}]; b (* Artur Jasinski, Mar 30 2008 *)
    Select[Range[1, 1000], PrimeQ[lst = {}; Do[lst = Join[lst, IntegerDigits[n]], {n, 1, #}]; FromDigits[Reverse[lst]]] &] (* Robert Price, Mar 24 2015 *)

A048288 Number of prime factors counted with multiplicity of the reverse concatenation of numbers from 1 to n.

Original entry on oeis.org

0, 2, 2, 2, 3, 2, 2, 4, 5, 3, 2, 3, 3, 4, 6, 4, 7, 10, 4, 5, 4, 5, 4, 5, 6, 9, 9, 5, 7, 8, 3, 6, 5, 7, 9, 8, 4, 3, 6, 5, 8, 6, 3, 8, 7, 5, 7, 7, 3, 6, 3, 7, 12, 14, 3, 5, 4, 6, 3, 3, 5, 9, 6, 6, 7, 7, 4, 8, 8, 4, 9, 5, 7, 8, 10, 3, 7, 6, 4, 9, 10, 1, 3, 8, 3
Offset: 1

Views

Author

Paul Jasper (jasperpaul(AT)hotmail.com)

Keywords

Examples

			21 = 3*7 so a(2) = 2; 321 = 3*107 so a(3) = 2; 4321 = 29*149 so a(4) = 2; etc.
a(1)=0 since 1 has no prime factors.
		

Crossrefs

Programs

  • Mathematica
    Join[{0},Table[PrimeOmega[FromDigits[Flatten[IntegerDigits[Range[i,1,-1]]]]],{i,2,36}]] (* Jayanta Basu, May 30 2013 *)

Formula

a(n) = A001222(A000422(n)). - Michel Marcus, Jun 14 2021

Extensions

Offset and a(19) corrected and more terms from Sean A. Irvine, Jun 13 2021
Edited by N. J. A. Sloane, Sep 04 2021

A075022 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 3, 41, 617, 823, 643, 9721, 14593, 3803, 1234567891, 630803, 2110805449, 869211457, 205761315168520219, 8230452606740808761, 1231026625769, 584538396786764503, 801309546900123763, 833929457045867563
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4) = 617 since 1234 = 2*617.
		

Crossrefs

Programs

  • Mathematica
    a = {}; b = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[k]]], {k, 1, Length[w]}]; p = FromDigits[a]; AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 25}]; b (* Artur Jasinski, Apr 04 2008 *)
    Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n]]]][[-1,1]],{n,20}] (* Harvey P. Dale, Aug 31 2015 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A075020 a(1) = 1; for n>1, a(n) = the smallest prime divisor of the number C(n) formed from the reverse concatenation of 1,2,3,... up to n.

Original entry on oeis.org

1, 3, 3, 29, 3, 3, 19, 3, 3, 7, 3, 3, 17, 3, 3, 23, 3, 3, 17, 3, 3, 13, 3, 3, 11, 3, 3, 23, 3, 3, 7, 3, 3, 89, 3, 3, 29, 3, 3, 11, 3, 3, 52433, 3, 3, 23, 3, 3, 71, 3, 3, 7, 3, 3
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4)= 29, 29 is the smallest prime divisor of 4321 =29*149
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w]; Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}]; p = FromDigits[Reverse[a]]; AppendTo[b, First[First[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *)

Extensions

More terms from Sascha Kurz, Jan 03 2003

A038399 Concatenate first n nonzero Fibonacci numbers in reverse order.

Original entry on oeis.org

1, 11, 211, 3211, 53211, 853211, 13853211, 2113853211, 342113853211, 55342113853211, 8955342113853211, 1448955342113853211, 2331448955342113853211, 3772331448955342113853211, 6103772331448955342113853211, 9876103772331448955342113853211
Offset: 1

Views

Author

M. I. Petrescu (mipetrescu(AT)yahoo.com)

Keywords

References

  • Mihaly Bencze [Beneze], L. Tutescu, Some Notions and Questions in Number Theory, Sequence 7.

Crossrefs

Programs

  • Haskell
    a038399 n = a038399_list !! (n-1)
    a038399_list = h "" $ tail a000045_list where
       h xs (f:fs) = (read ys :: Integer) : h ys fs
         where ys = show f ++ xs
    -- Reinhard Zumkeller, Mar 01 2014
    
  • Mathematica
    Module[{nn=20,fibs},fibs=Fibonacci[Range[nn]];Table[FromDigits[ Flatten[ IntegerDigits/@ Reverse[Take[fibs,n]]]],{n,nn}]] (* Harvey P. Dale, Aug 30 2016 *)
  • PARI
    a(n) = my(t=fibonacci(n)); forstep(k=n-1, 1, -1, t=t*10^#Str(fibonacci(k))+fibonacci(k)); t; \\ Michel Marcus, Apr 06 2024

Extensions

More terms from Andrew Gacek (andrew(AT)dgi.net), Feb 21 2000
Offset changed by Reinhard Zumkeller, Mar 01 2014
More terms from Harvey P. Dale, Aug 30 2016

A075021 a(1) = 1; for n>1, a(n) = the largest prime divisor of the number C(n) formed from the concatenation of n, n-1, n-2, n-3, ... down to 1.

Original entry on oeis.org

1, 7, 107, 149, 953, 218107, 402859, 4877, 379721, 54421, 370329218107, 5767189888301, 237927839, 1728836281, 136133374970881, 1190788477118549, 677181889, 399048049, 40617114482123, 629639170774346584751, 2605975408790409767, 65372140114441
Offset: 1

Views

Author

Amarnath Murthy, Sep 01 2002

Keywords

Examples

			a(4)= 149 as 149 is the largest prime divisor of 4321 =29*149
		

Crossrefs

Programs

  • Mathematica
    b = {}; a = {}; Do[w = RealDigits[n]; w = First[w];Do[AppendTo[a, w[[Length[w] - k + 1]]], {k, 1, Length[w]}];p = FromDigits[Reverse[a]];AppendTo[b, First[Last[FactorInteger[p]]]], {n, 1, 21}]; b (* Artur Jasinski, Apr 04 2008 *)
    Table[FactorInteger[FromDigits[Flatten[IntegerDigits/@Range[n,1,-1]]]] [[-1,1]],{n,20}] (* Harvey P. Dale, Dec 14 2020 *)
  • PARI
    a(n) = if(n==1, 1, vecmax(factor(eval(concat(apply(k->Str(n-k+1), [1..n]))))[, 1])); \\ Daniel Suteu, May 26 2022

Formula

a(n) = A006530(A000422(n)). - Daniel Suteu, May 26 2022

Extensions

More terms from Sascha Kurz, Jan 03 2003
Name edited by Felix Fröhlich, May 26 2022
Previous Showing 21-30 of 72 results. Next