cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 75 results. Next

A056005 Number of 3-element ordered antichains on an unlabeled n-element set; T_1-hypergraphs with 3 labeled nodes and n hyperedges.

Original entry on oeis.org

0, 0, 0, 2, 19, 90, 302, 820, 1926, 4068, 7920, 14454, 25025, 41470, 66222, 102440, 154156, 226440, 325584, 459306, 636975, 869858, 1171390, 1557468, 2046770, 2661100, 3425760, 4369950, 5527197, 6935814, 8639390, 10687312, 13135320, 16046096, 19489888
Offset: 0

Views

Author

Vladeta Jovovic, Goran Kilibarda, Jul 24 2000

Keywords

Comments

T_1-hypergraph is a hypergraph (not necessarily without empty hyperedges or multiple hyperedges) which for every ordered pair of distinct nodes have a hyperedge containing one but not the other node.

Examples

			There are 19 3-element ordered antichains on an unlabeled 4-element set: ({4},{3},{2}), ({4},{3},{1,2}), ({4},{2,3},{1}), ({4},{2,3},{1,3}), ({3,4},{2},{1}), ({3,4},{2},{1,4}), ({3,4},{2,4},{2,3}), ({3,4},{2,4},{1}), ({3,4},{2,4},{1,4}), ({3,4},{2,4},{1,3}), ({3,4},{2,4},{1,2}), ({3,4},{2,4},{1,2,3}), ({3,4},{1,2},{2,4}), ({3,4},{1,2,4},{2,3}), ({3,4},{1,2,4},{1,2,3}), ({2,3,4},{1,4},{1,3}), ({2,3,4},{1,4},{1,2,3}), ({2,3,4},{1,3,4},{1,2}), ({2,3,4},{1,3,4},{1,2,4}).
		

Crossrefs

Cf. A047707 for 3-element (unordered) antichains on a labeled n-element set.

Programs

  • Magma
    [n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040: n in [0..30]]; // G. C. Greubel, Nov 22 2017
  • Mathematica
    Table[Binomial[n+7,7]-6Binomial[n+5,5]+6Binomial[n+4,4]+3Binomial[n+3,3]- 6Binomial[n+2,2]+ 2Binomial[n+1,1],{n,0,40}] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,8,-1},{0,0,0,2,19,90,302,820},40] (* Harvey P. Dale, Jul 27 2011 *)
  • PARI
    x='x+O('x^50); concat([0,0,0], Vec(x^3*(2+3*x-6*x^2+2*x^3)/(1-x)^8)) \\ G. C. Greubel, Oct 06 2017
    

Formula

a(n) = C(n+7, 7) - 6*C(n+5, 5) + 6*C(n+4, 4) + 3*C(n+3, 3) - 6*C(n+2, 2) + 2*C(n+1, 1).
a(n) = n*(n-2)*(n-1)*(n+1)*(n^3 + 30*n^2 + 131*n - 270)/5040.
G.f.: 1/(1-x)^8 - 6/(1-x)^6 + 6/(1-x)^5 + 3/(1-x)^4 - 6/(1-x)^3 + 2/(1-x)^2.
G.f.: x^3*(2 + 3*x - 6*x^2 + 2*x^3)/(1-x)^8.
Recurrence: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
Generally, recurrence for the number of m-element ordered antichains on an unlabeled n-element set is a(m, n) = C(2^m, 1)*a(m, n - 1) - C(2^m, 2)*a(m, n - 2) + C(2^m, 3)*a(m, n - 3) + ... + ( - 1)^(k - 1)*C(2^m, k)*a(m, n - k) + ... - a(m, n - 2^m).
a(n) = A000580(n+7) - 6*A000389(n+5) + 6*A000332(n+4) + 3*A000292(n+1) - 6*A000217(n+1) + 2*A000027(n+1). - R. J. Mathar, Nov 16 2007

Extensions

More terms from Harvey P. Dale, Jul 27 2011

A087108 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,4). The p-th row (p>=1) contains a(i,p) for i=1 to 4*p-3, where a(i,p) satisfies Sum_{i=1..n} C(i+3,4)^p = 5 * C(n+4,5) * Sum_{i=1..4*p-3} a(i,p) * C(n-1,i-1)/(i+4).

Original entry on oeis.org

1, 1, 4, 6, 4, 1, 1, 24, 176, 624, 1251, 1500, 1070, 420, 70, 1, 124, 3126, 33124, 191251, 681000, 1596120, 2543520, 2780820, 2058000, 987000, 277200, 34650, 1, 624, 49376, 1350624, 18308751, 146500500, 763418870, 2749648020, 7101675070, 13440210000
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+4,4)^p of degree 4*p in terms of falling factorials: C(x+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+4,4)^p = Sum_{k = 0..4*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,24,176,...,70, so Sum_{i=1..n} C(i+3,4)^3 = 5 * C(n+4,5) * [ a(1,3)/5 + a(2,3)*C(n-1,1)/6 + a(3,3)*C(n-1,2)/7 + ... + a(9,3)*C(n-1,8)/13 ] = 5 * C(n+4,5) * [ 1/5 + 24*C(n-1,1)/6 + 176*C(n-1,2)/7 + ... + 70*C(n-1,8)/13 ]. Cf. A086024 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
  n = 0 | 1
  n = 1 | 1   4    6     4      1
  n = 2 | 1  24  176   624   1251   1500    1070  420  70
  n = 3 | 1 124 3126 33124 191251 681000 1596120 ...
  ...
Row 2: C(i+4,4)^2 = C(i,0) + 24*C(i,1) + 176*C(i,2) + 624*C(i,3) + 1251*C(i,4) + 1500*C(i,5) + 1070*C(i,6) + 420*C(i,7) + 70*C(i,8). Hence, Sum_{i = 0..n-1} C(i+4,4)^2 =  C(n,1) + 24*C(n,2) + 176*C(n,3) + 624*C(n,4) + 1251*C(n,5) + 1500*C(n,6) + 1070*C(n,7) + 420*C(n,8) + 70*C(n,9) .(End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+4, 4)^n, i = 0..k), k = 0..4*n), n = 0..6); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 5, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 4, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 4*p - 3}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 5, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 4, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 4*p-3, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+5, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+4, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+4,4)^n. Equivalently, let v_n denote the sequence (1, 5^n, 15^n, 35^n, ...) regarded as an infinite column vector, where 1, 5, 15, 35, ... is the sequence binomial(n+4,4) - see A000332. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = C(k+4,4)*T(n,k) + 4*C(k+3,4)*T(n,k-1) + 6*C(k+2,4)*T(n,k-2) + 4*C(k+1,4)*T(n,k-3) + C(k,4)*T(n,k-4) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 4*n.
n-th row polynomial R(n,x) = (1 + x)^4 o (1 + x)^4 o ... o (1 + x)^4 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n,x) = Sum_{i >= 0} binomial(i+4,4)^n*x^i/(1 + x)^(i+1).
R(n+1,x) = 1/4! * (1 + x)^4 * (d/dx)^4(x^4*R(n,x)).
(1 - x)^(4*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A236463. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087109 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,5). The p-th row (p>=1) contains a(i,p) for i=1 to 5*p-4, where a(i,p) satisfies Sum_{i=1..n} C(i+4,5)^p = 6 * C(n+5,6) * Sum_{i=1..5*p-4} a(i,p) * C(n-1,i-1)/(i+5).

Original entry on oeis.org

1, 1, 5, 10, 10, 5, 1, 1, 35, 370, 1920, 5835, 11253, 14240, 11830, 6230, 1890, 252, 1, 215, 8830, 148480, 1352615, 7665757, 29224020, 78518790, 152794740, 218270220, 229279512, 175227360, 94864770, 34504470, 7567560, 756756, 1, 1295, 191890
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+5,5)^p of degree 5*p in terms of falling factorials: C(x+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+5,5)^p = Sum_{k = 0..5*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,35,370,...,252, so Sum_{i=1..n} C(i+4,5)^3 = 6 * C(n+5,6) * [ a(1,3)/6 + a(2,3)*C(n-1,1)/7 + a(3,3)*C(n-1,2)/8 + ... + a(11,3)*C(n-1,10)/16 ] = 6 * C(n+5,6) * [ 1/6 + 35*C(n-1,1)/7 + 370*C(n-1,2)/8 + ... + 252*C(n-1,10)/16 ]. Cf. A086026 for more details.
From _Peter Bala_, Mar 11 2018: (Start)
Table begins
1
1  5  10   10    5     1
1 35 370 1920 5835 11253 14240 11830 6230 1890 252
...
Row 2: C(i+5,5)^2 = C(i,0) + 35*C(i,1) + 370*C(i,2) + 1920*C(i,3) + 5835*C(i,4) + 11253*C(i,5) + 14240*C(i,6) + 11830*C(i,7) + 6230*C(i,8) + 1890*C(i,9) + 252*C(i,10). Hence, Sum_{i = 0..n-1} C(i+5,5)^2 = C(n,1) + 35*C(n,2) + 370*C(n,3) + 1920*C(n,4) + 5835*C(n,5) + 11253*C(n,6) + 14240*C(n,7) + 11830*C(n,8) + 6230*C(n,9) + 1890*C(n,10) + 252*C(n,11). (End)
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+5, 5)^n, i = 0..k), k = 0..5*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 6, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 5, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 5*p - 4}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 6, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 5, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 5*p-4, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+6, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+5, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+5,5)^n. Equivalently, let v_n denote the sequence (1, 6^n, 21^n, 56^n, ...) regarded as an infinite column vector, where 1, 6, 21, 56, ... is the sequence binomial(n+5,5) - see A000389. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..5} C(5,i)*C(k+5-i,5)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 5*n.
n-th row polynomial R(n,x) = (1 + x)^5 o (1 + x)^5 o ... o (1 + x)^5 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/5!*(1 + x)^5 * (d/dx)^5(x^5*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+5,5)^n*x^i/(1 + x)^(i+1).
(1 - x)^(5*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237202. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A087110 This table shows the coefficients of combinatorial formulas needed for generating the sequential sums of p-th powers of binomial coefficients C(n,6). The p-th row (p>=1) contains a(i,p) for i=1 to 6*p-5, where a(i,p) satisfies Sum_{i=1..n} C(i+5,6)^p = 7 * C(n+6,7) * Sum_{i=1..6*p-5} a(i,p) * C(n-1,i-1)/(i+6).

Original entry on oeis.org

1, 1, 6, 15, 20, 15, 6, 1, 1, 48, 687, 4850, 20385, 55908, 104959, 137886, 127050, 80640, 33642, 8316, 924, 1, 342, 21267, 527876, 7020525, 58015362, 324610399, 1297791264, 3839203452, 8595153000, 14760228672, 19560928464, 19987430694
Offset: 1

Views

Author

André F. Labossière, Aug 11 2003

Keywords

Comments

From Peter Bala, Mar 11 2018: (Start)
The table entries T(n,k) are the coefficients when expressing the polynomial C(x+6,6)^p of degree 6*p in terms of falling factorials: C(x+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(x,k). It follows that Sum_{i = 0..n-1} C(i+6,6)^p = Sum_{k = 0..6*p} T(p,k)*C(n,k+1). (End)

Examples

			Row 3 contains 1,48,687,...,924, so Sum_{i=1..n} C(i+5,6)^3 = 7 * C(n+6,7) * [ a(1,3)/7 + a(2,3)*C(n-1,1)/8 + a(3,3)*C(n-1,2)/9 + ... + a(13,3)*C(n-1,12)/19 ] = 7 * C(n+6,7) * [ 1/7 + 48*C(n-1,1)/8 + 687*C(n-1,2)/9 + ... + 924*C(n-1,12)/19 ]. Cf. A086028 for more details.
		

Crossrefs

Programs

  • Maple
    seq(seq(add( (-1)^(k-i)*binomial(k, i)*binomial(i+6, 6)^n, i = 0..k), k = 0..6*n), n = 0..5); # Peter Bala, Mar 11 2018
  • Mathematica
    a[i_, p_] := Sum[Binomial[i - 1, 2*k - 2]*Binomial[i - 2*k + 7, i - 2*k + 1]^(p - 1) - Binomial[i - 1, 2*k - 1]*Binomial[i - 2*k + 6, i - 2*k]^(p - 1), {k, 1, (2*i + 1 + (-1)^(i - 1))/4}]; Table[If[p == 1, 1, a[i, p]], {p, 1, 10}, {i, 1, 6*p - 5}]//Flatten (* G. C. Greubel, Nov 23 2017 *)
  • PARI
    {a(i, p) = sum(k=1, (2*i + 1 + (-1)^(i - 1))/4, binomial(i - 1, 2*k - 2)*binomial(i - 2*k + 7, i - 2*k + 1)^(p - 1) - binomial(i - 1, 2*k - 1)*binomial(i - 2*k + 6, i - 2*k)^(p - 1))}; for(p=1,8, for(i=1, 6*p-5, print1(if(p==1,1,a(i,p)), ", "))) \\ G. C. Greubel, Nov 23 2017

Formula

a(i, p) = Sum_{k=1..[2*i+1+(-1)^(i-1)]/4} [ C(i-1, 2*k-2)*C(i-2*k+7, i-2*k+1)^(p-1) -C(i-1, 2*k-1)*C(i-2*k+6, i-2*k)^(p-1) ]
From Peter Bala, Mar 11 2018: (Start)
The following remarks assume the row and column indices start at 0.
T(n,k) = Sum_{i = 0..k} (-1)^(k-i)*binomial(k,i) * binomial(i+6,6)^n. Equivalently, let v_n denote the sequence (1, 7^n, 28^n, 84^n, ...) regarded as an infinite column vector, where 1, 7, 28, 84, ... is the sequence binomial(n+6,6) - see A000579. Then the n-th row of this table is determined by the matrix product P^(-1)*v_n, where P denotes Pascal's triangle A007318.
Recurrence: T(n+1,k) = Sum_{i = 0..6} C(6,i)*C(k+6-i,6)*T(n,k-i) with boundary conditions T(n,0) = 1 for all n and T(n,k) = 0 for k > 6*n.
n-th row polynomial R(n,x) = (1 + x)^6 o (1 + x)^6 o ... o (1 + x)^6 (n factors), where o denotes the black diamond product of power series defined in Dukes and White.
R(n+1,x) = 1/6!*(1 + x)^6 * (d/dx)^6(x^6*R(n,x)).
R(n,x) = Sum_{i >= 0} binomial(i+6,6)^n*x^i/(1 + x)^(i+1).
(1 - x)^(6*n)*R(n,x/(1 - x)) appears to equal the n-th row polynomial of A237252. (End)

Extensions

Edited by Dean Hickerson, Aug 16 2003

A221857 Number A(n,k) of shapes of balanced k-ary trees with n nodes, where a tree is balanced if the total number of nodes in subtrees corresponding to the branches of any node differ by at most one; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 3, 1, 1, 0, 1, 1, 4, 3, 4, 1, 0, 1, 1, 5, 6, 1, 4, 1, 0, 1, 1, 6, 10, 4, 9, 4, 1, 0, 1, 1, 7, 15, 10, 1, 27, 1, 1, 0, 1, 1, 8, 21, 20, 5, 16, 27, 8, 1, 0, 1, 1, 9, 28, 35, 15, 1, 96, 81, 16, 1, 0, 1, 1, 10, 36, 56, 35, 6, 25, 256, 81, 32, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, Apr 10 2013

Keywords

Examples

			: A(2,2) = 2  : A(2,3) = 3      : A(3,3) = 3          :
:   o     o   :   o    o    o   :   o      o      o   :
:  / \   / \  :  /|\  /|\  /|\  :  /|\    /|\    /|\  :
: o         o : o      o      o : o o    o   o    o o :
:.............:.................:.....................:
: A(3,4) = 6                                          :
:    o        o        o        o       o        o    :
:  /( )\    /( )\    /( )\    /( )\   /( )\    /( )\  :
: o o      o   o    o     o    o o     o   o      o o :
Square array A(n,k) begins:
  1, 1, 1,  1,   1,   1,  1,  1,  1,   1,   1, ...
  1, 1, 1,  1,   1,   1,  1,  1,  1,   1,   1, ...
  0, 1, 2,  3,   4,   5,  6,  7,  8,   9,  10, ...
  0, 1, 1,  3,   6,  10, 15, 21, 28,  36,  45, ...
  0, 1, 4,  1,   4,  10, 20, 35, 56,  84, 120, ...
  0, 1, 4,  9,   1,   5, 15, 35, 70, 126, 210, ...
  0, 1, 4, 27,  16,   1,  6, 21, 56, 126, 252, ...
  0, 1, 1, 27,  96,  25,  1,  7, 28,  84, 210, ...
  0, 1, 8, 81, 256, 250, 36,  1,  8,  36, 120, ...
		

Crossrefs

Rows n=0+1, 2-3, give: A000012, A001477, A179865.
Diagonal and upper diagonals give: A028310, A000217, A000292, A000332, A000389, A000579, A000580, A000581, A000582, A001287, A001288.
Lower diagonals give: A000012, A000290, A092364(n) for n>1.

Programs

  • Maple
    A:= proc(n, k) option remember; local m, r; if n<2 or k=1 then 1
          elif k=0 then 0 else r:= iquo(n-1, k, 'm');
          binomial(k, m)*A(r+1, k)^m*A(r, k)^(k-m) fi
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    a[n_, k_] := a[n, k] = Module[{m, r}, If[n < 2 || k == 1, 1, If[k == 0, 0, {r, m} = QuotientRemainder[n-1, k]; Binomial[k, m]*a[r+1, k]^m*a[r, k]^(k-m)]]]; Table[a[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Apr 17 2013, translated from Maple *)

A101104 a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4.

Original entry on oeis.org

1, 12, 23, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Cecilia Rossiter, Dec 15 2004

Keywords

Comments

Original name: The first summation of row 4 of Euler's triangle - a row that will recursively accumulate to the power of 4.

Crossrefs

For other sequences based upon MagicNKZ(n,k,z):
..... | n = 1 | n = 2 | n = 3 | n = 4 | n = 5 | n = 6 | n = 7
---------------------------------------------------------------------------
z = 0 | A000007 | A019590 | .......MagicNKZ(n,k,0) = A008292(n,k+1) .......
z = 1 | A000012 | A040000 | A101101 | thisSeq | A101100 | ....... | .......
z = 2 | A000027 | A005408 | A008458 | A101103 | A101095 | ....... | .......
z = 3 | A000217 | A000290 | A003215 | A005914 | A101096 | ....... | .......
z = 4 | A000292 | A000330 | A000578 | A005917 | A101098 | ....... | .......
z = 5 | A000332 | A002415 | A000537 | A000583 | A022521 | ....... | A255181
Cf. A101095 for an expanded table and more about MagicNKZ.

Programs

  • Mathematica
    MagicNKZ = Sum[(-1)^j*Binomial[n+1-z, j]*(k-j+1)^n, {j, 0, k+1}];Table[MagicNKZ, {n, 4, 4}, {z, 1, 1}, {k, 0, 34}]
    Join[{1, 12, 23},LinearRecurrence[{1},{24},56]] (* Ray Chandler, Sep 23 2015 *)

Formula

a(k) = MagicNKZ(4,k,1) where MagicNKZ(n,k,z) = Sum_{j=0..k+1} (-1)^j*binomial(n+1-z,j)*(k-j+1)^n (cf. A101095). That is, a(k) = Sum_{j=0..k+1} (-1)^j*binomial(4, j)*(k-j+1)^4.
a(1)=1, a(2)=12, a(3)=23, and a(n)=24 for n>=4. - Joerg Arndt, Nov 30 2014
G.f.: x*(1+11*x+11*x^2+x^3)/(1-x). - Colin Barker, Apr 16 2012

Extensions

New name from Joerg Arndt, Nov 30 2014
Original Formula edited and Crossrefs table added by Danny Rorabaugh, Apr 22 2015

A238801 Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).

Original entry on oeis.org

1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 05 2014

Keywords

Comments

Row sums are powers of 2.

Examples

			Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    T(n,k) = binomial(n+1, k+1)*(1-(k % 2));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017

Formula

G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A000079(n), A015518(n+1), A003683(n+1), A079773(n+1), A051958(n+1), A080920(n+1), A053455(n), A160958(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A278385 T(n,k)=Number of nXk 0..1 arrays with rows and columns in lexicographic nondecreasing order but with exactly three mistakes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 40, 74, 40, 0, 1, 267, 1220, 1220, 267, 1, 8, 1350, 12910, 23640, 12910, 1350, 8, 36, 5936, 100807, 368421, 368421, 100807, 5936, 36, 120, 23565, 652343, 4703562, 8632118, 4703562, 652343, 23565, 120, 330, 84912, 3750182
Offset: 1

Views

Author

R. H. Hardin, Nov 20 2016

Keywords

Comments

Table starts
...0......0........0...........0..............0................1
...0......0........3..........40............267.............1350
...0......3.......74........1220..........12910...........100807
...0.....40.....1220.......23640.........368421..........4703562
...0....267....12910......368421........8632118........179716850
...1...1350...100807.....4703562......179716850.......6204309386
...8...5936...652343....50473056.....3325788157.....198563803019
..36..23565..3750182...474255829....54735436424....5851197688577
.120..84912.19784428..4047341159...813247916326..157794170262819
.330.278422.96786947.32112086692.11132424779200.3912513274701995

Examples

			Some solutions for n=4 k=4
..0..1..1..0. .0..1..1..0. .1..0..1..0. .0..0..0..1. .0..0..0..0
..0..1..0..0. .0..1..1..1. .1..0..0..0. .1..1..1..1. .0..1..0..0
..1..0..0..1. .1..1..0..0. .1..0..1..0. .1..1..0..1. .1..1..1..0
..1..0..1..1. .0..0..1..0. .1..1..1..0. .0..1..1..1. .1..1..0..1
		

Crossrefs

Column 1 is A000580(n+1).

Formula

Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 15]
k=3: [polynomial of degree 31]
k=4: [polynomial of degree 63]
k=5: [polynomial of degree 127]

A278855 T(n,k)=Number of nXk 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly three mistakes.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 25, 66, 25, 0, 1, 239, 1348, 1348, 239, 1, 8, 1486, 15066, 30772, 15066, 1486, 8, 36, 7072, 118158, 449677, 449677, 118158, 7072, 36, 120, 27828, 731444, 4950399, 9317846, 4950399, 731444, 27828, 120, 330, 94720, 3813048
Offset: 1

Views

Author

R. H. Hardin, Nov 29 2016

Keywords

Comments

Table starts
...0.....0........0..........0............0..............1................8
...0.....0........1.........25..........239...........1486.............7072
...0.....1.......66.......1348........15066.........118158...........731444
...0....25.....1348......30772.......449677........4950399.........44571591
...0...239....15066.....449677......9317846......154090507.......2167109763
...1..1486...118158....4950399....154090507.....4026240722......92891826961
...8..7072...731444...44571591...2167109763....92891826961....3637198028018
..36.27828..3813048..344302564..26799758534..1935392159582..131770344218055
.120.94720.17413532.2353207764.297417275848.36831668321915.4438698421228261

Examples

			Some solutions for n=4 k=4
..1..0..1..0. .1..1..1..0. .1..0..0..0. .1..0..0..0. .1..1..1..1
..0..0..1..0. .0..1..1..0. .1..0..1..0. .1..0..1..0. .0..1..0..0
..0..0..0..1. .0..0..0..1. .1..0..0..0. .1..0..0..1. .1..1..1..0
..1..0..1..1. .0..1..0..1. .0..1..0..0. .1..0..0..0. .0..1..1..1
		

Crossrefs

Column 1 is A000580(n+1).

Formula

Empirical for column k:
k=1: [polynomial of degree 7]
k=2: [polynomial of degree 14]
k=3: [polynomial of degree 27]
k=4: [polynomial of degree 52]
k=5: [polynomial of degree 101]

A001779 Expansion of 1/((1+x)(1-x)^8).

Original entry on oeis.org

1, 7, 29, 91, 239, 553, 1163, 2269, 4166, 7274, 12174, 19650, 30738, 46782, 69498, 101046, 144111, 201993, 278707, 379093, 508937, 675103, 885677, 1150123, 1479452, 1886404, 2385644, 2993972
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of positive terms in the expansion of (a_1 + a_2 + a_3 + a_4 + a_5 + a_6 + a_7 - z)^n. Also the convolution of A001769 and A000012; A001753 and A001477; A001752 and A000217; A002623 and A000292; A002620 and A000332; A004526 and A000389. - Sergio Falcon (sfalcon(AT)dma.ulpgc.es), Feb 13 2007

Crossrefs

Cf. A001769 (first differences), A169795 (binomial transf.)

Programs

  • Magma
    [1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 : n in [0..30]]; // Vincenzo Librandi, Oct 08 2011
    
  • Maple
    A001779 := proc(n) 1/80640*(2*n+9) *(4*n^6 +108*n^5 +1138*n^4 +5904*n^3 +15628*n^2 +19638*n +8925)+(-1)^n/256 ; end proc:
    seq(A001779(n),n=0..50) ; # R. J. Mathar, Mar 22 2011
  • Mathematica
    CoefficientList[Series[1/((1 + x) (1 - x)^8), {x, 0, 50}], x] (* G. C. Greubel, Nov 24 2017 *)
    LinearRecurrence[{7,-20,28,-14,-14,28,-20,7,-1},{1,7,29,91,239,553,1163,2269,4166},30] (* Harvey P. Dale, Jan 21 2023 *)
  • PARI
    a(n)=(2*n+9)*(4*n^6+108*n^5+1138*n^4+5904*n^3+15628*n^2+19638*n + 8925)/80640 +(-1)^n/256 \\ Charles R Greathouse IV, Apr 17 2012

Formula

a(n) = (-1)^{7-n}*Sum_{i=0..n} ((-1)^(7-i)*binomial(7+i,i)). - Sergio Falcon, Feb 13 2007
a(n)+a(n+1) = A000580(n+8). - R. J. Mathar, Jan 06 2021
Previous Showing 31-40 of 75 results. Next