cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 76 results. Next

A112619 Number of connected simple graphs with n vertices, n+2 edges, and vertex degrees no more than 4.

Original entry on oeis.org

0, 0, 0, 1, 4, 18, 79, 326, 1278, 4875, 17978, 64720, 227842, 787546, 2678207, 8982754, 29761361, 97558039, 316778169, 1019996738, 3259673935, 10347077497, 32644696187, 102425388286, 319754805262
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2005

Keywords

Crossrefs

The analogs for n+k edges with k = -1, 0, ..., 7 are: A000602, A036671, A112410, this sequence, A112408, A112424, A112425, A112426, A112442. Cf. A121941.

Programs

  • nauty
    for n in {4..15}; do geng -c -D4 ${n} $((n+2)):$((n+2)) -u; done # Andrey Zabolotskiy, Nov 24 2017

Extensions

Corrected offset and new name from Andrey Zabolotskiy, Nov 24 2017
a(18) corrected and a(19)-a(25) added by Georg Grasegger, Jun 05 2023

A000600 Number of tertiary alcohols (alkanols or alkyl alcohols C_n H_{2n+1} OH) with n carbon atoms.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 3, 7, 17, 40, 102, 249, 631, 1594, 4074, 10443, 26981, 69923, 182158, 476141, 1249237, 3287448, 8677074, 22962118, 60915508, 161962845, 431536102, 1152022025, 3081015684, 8253947104, 22147214029, 59514474967
Offset: 0

Views

Author

Keywords

References

  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000598.

Formula

Henze and Blair give a recurrence; also g.f. A(x) = x*cycle_index(S3, B(x)-1), B(x) = g.f. for A000598.

A002986 Number of non-cyclic hydrocarbons with n carbon atoms (excluding stereoisomers).

Original entry on oeis.org

1, 3, 4, 12, 27, 84, 247, 826, 2777, 9868, 35579, 131847, 495671, 1893819, 7320954, 28619581, 112923053, 449343946, 1801330288, 7269849395, 29517342098, 120507480668, 494449558111, 2038073860257, 8436185990286, 35055744550563, 146195133355612, 611723431211193
Offset: 1

Views

Author

Keywords

Comments

a(n) is the number of hypothetical acyclic hydrocarbons with n carbon atoms that satisfy the octet rule. - Natan Arie Consigli, Dec 26 2016
a(n) is the number of acyclic connected multigraphs with n nodes of degree less than 5, except for a(2). - Natan Arie Consigli, May 25 2017

Examples

			a(3) = 4 because there are 4 non-cyclic structures that can be drawn with 3 carbons (propane, propene, propyne, and allene). - _David Consiglio, Jr._, May 15 2014
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000602 (restriction to alkanes).

Programs

  • PARI
    \\ here S is MSET_k comb class of g
    S(g,n,k)={polcoeff(exp( sum(i=1, k, (y^i + O(y*y^k))*subst(g + O(x*x^(n\i)), x, x^i)/i )), k, y) + O(x*x^n)}
    R(n)={my(f,g,h); f=g=h=O(x); for(n=1, n, h = x*(1+f); g = h + x*(S(f,n,2) + g); f = g + x*(S(f,n,3) + f*g + h)); [f,g,h]}
    seq(n)={my(t=R(n), f=t[1], g=t[2], h=t[3]); Vec(f + x*(S(f, n, 4) + g*S(f, n, 2) + S(g, n, 2) + f*h) + (subst(f+g+h+O(x*x^(n\2)), x, x^2) - f^2 - g^2 - h^2)/2)} \\ Andrew Howroyd, May 26 2018
  • nauty
    geng -c -D4 ${n} $[${n}-1]:$[${n}-1] -q | multig -m3 -D4 -u
    

Formula

a(n) ~ c * d^n / n^(5/2), where d = 4.576467424512811226430711636719246756... and c = 0.84315686601314832608482486521039... - Vaclav Kotesovec, Feb 11 2019

Extensions

Better definition from Sergio Pimentel, Apr 28 2006
a(11) (computed using Nauty) from Vesa Linja-aho (vesa.linja-aho(AT)tkk.fi), Apr 24 2008
a(12)-a(13) (computed using Molgen 3.5) from David Consiglio, Jr., May 15 2014
Existing terms verified and a(14)-a(16) from Sean A. Irvine, Dec 22 2014
a(17)-a(19) from Sean A. Irvine, Dec 28 2014
a(18)-a(19) corrected and a(20)-a(24) (computed using nauty) from Sean A. Irvine, Jan 02 2015
Terms a(25) and beyond from Andrew Howroyd, May 26 2018

A018210 Alkane (or paraffin) numbers l(9,n).

Original entry on oeis.org

1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520, 4032, 6216, 9324, 13608, 19440, 27192, 37389, 50556, 67408, 88660, 115258, 148148, 188552, 237692, 297115, 368368, 453376, 554064, 672792, 811920, 974304, 1162800, 1380825, 1631796
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

From M. F. Hasler, May 02 2009: (Start)
Also, 6th column of A159916, i.e., number of 6-element subsets of {1,...,n+6} whose elements add up to an odd integer.
Third differences are A002412([n/2]). (End)
F(1,6,n) is the number of bracelets with 1 blue, 6 identical red and n identical black beads. If F(1,6,1) = 4 and F(1,6,2) = 16 taken as a base, F(1,6,n) = n(n+1)(n+2)(n+3)(n+4)/120 + F(1,4,n) + F(1,6,n-2). F(1,4,n) is the number of bracelets with 1 blue, 4 identical red and n identical black beads. If F(1,4,1) = 3 and F(1,4,2) = 9 taken as a base; F(1,4,n) = n(n+1)(n+2)/6 + F(1,2,n) + F(1,4,n-2). F(1,2,n) is the number of bracelets with 1 blue, 2 identical red and n identical black beads. If F(1,2,1) = 2 and F(1,2,2) = 4 taken as a base F(1,2,n) = n + 1 + F(1,2,n-2). - Ata Aydin Uslu and Hamdi G. Ozmenekse, Mar 16 2012

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • Winston C. Yang (paper in preparation).

Crossrefs

Cf. A005995 (first differences).

Programs

  • Maple
    a:=n-> (Matrix([[1,0$7,3,12]]). Matrix(10, (i,j)-> if (i=j-1) then 1 elif j=1 then [4, -3, -8, 14, 0, -14, 8, 3, -4, 1][i] else 0 fi)^n)[1,1]: seq (a(n), n=0..33); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[(1+3*x^2)/((1-x)^7*(1+x)^3) + O[x]^34, x] (* Jean-François Alcover, Jun 08 2015 *)
    LinearRecurrence[{4, -3, -8, 14, 0, -14, 8, 3, -4, 1},{1, 4, 16, 44, 110, 236, 472, 868, 1519, 2520},34] (* Ray Chandler, Sep 23 2015 *)
  • PARI
    A018210(n)=(n+2)*(n+4)*(n+6)^2*(n^2+3*n+5)/1440-if(n%2,(n^2+7*n+11)/32) \\ M. F. Hasler, May 02 2009

Formula

G.f.: (1+3*x^2)/(1-x)^4/(1-x^2)^3. - N. J. A. Sloane
l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
a(2n) = (n+1)(n+2)(n+3)^2(4n^2+6n+5)/90, a(2n-1) = n(n+1)(n+2)(n+3)(4n^2+6n+5)/90. - M. F. Hasler, May 02 2009
a(n) = (1/(2*6!))*(n+2)*(n+4)*(n+6)*((n+1)*(n+3)*(n+5) + 1*3*5) - (1/2)*(1/2^4)*(n^2+7*n+11)*(1/2)*(1-(-1)^n). - Yosu Yurramendi, Jun 23 2013
a(n) = A060099(n)+3*A060099(n-2). - R. J. Mathar, May 08 2020

A018213 Alkane (or paraffin) numbers l(12,n).

Original entry on oeis.org

1, 5, 30, 110, 365, 1001, 2520, 5720, 12190, 24310, 46252, 83980, 147070, 248710, 408760, 653752, 1021735, 1562275, 2343770, 3453450, 5008003, 7153575, 10080720, 14024400, 19284460, 26225628, 35304920, 47071640
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Equals (1/2) * ((A000582) + (A000332 interleaved with zeros)) = (1/2) * ((1, 10, 55, 220, 715...) + (1, 0, 5, 0, 15,...)); where A000582 = binomial(n,9) and A000332 = binomial(n,4).

References

  • S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
  • Winston C. Yang (paper in preparation).

Programs

  • Magma
    [(1/(2*Factorial(9)))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9)+(1/6)*(1/2^7)*(n+2)*(n+4)*(n+6)*(n+8)*(1/2)*(1+(-1)^n): n in [0..40]]; // Vincenzo Librandi, Oct 16 2013
  • Mathematica
    CoefficientList[Series[(5 x^4 + 10 x^2 + 1)/((x - 1)^10 (x + 1)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 16 2013 *)
    LinearRecurrence[{5, -5, -15, 35, 1, -65, 45, 45, -65, 1, 35, -15, -5, 5, -1},{1, 5, 30, 110, 365, 1001, 2520, 5720, 12190, 24310, 46252, 83980, 147070, 248710, 408760},101] (* Ray Chandler, Sep 23 2015 *)

Formula

l(c, r) = 1/2 binomial(c+r-3, r) + 1/2 d(c, r), where d(c, r) is binomial((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, binomial((c + r - 4)/2, r/2) if c is even and r is even, binomial((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (5*x^4+10*x^2+1)/((x-1)^10*(x+1)^5). [Colin Barker, Aug 06 2012]
a(n) = (1/(2*9!))*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(n+6)*(n+7)*(n+8)*(n+9) +(1/6)*(1/2^7)*(n+2)*(n+4)*(n+6)*(n+8)*(1/2)*(1+(-1)^n). [Yosu Yurramendi, Jun 23 2013]

A086194 Number of unrooted steric quartic trees with n (unlabeled) nodes and possessing a centroid; number of n carbon alkanes C(n)H(2n +2) with a centroid when stereoisomers are regarded as different.

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 11, 9, 55, 70, 345, 494, 2412, 3788, 18127, 30799, 143255, 256353, 1173770, 2190163, 9892302, 19130814, 85289390, 169923748, 749329719, 1531701274, 6688893605, 13984116304, 60526543480, 129073842978
Offset: 1

Views

Author

Steve Strand (snstrand(AT)comcast.net), Aug 28 2003

Keywords

Comments

The degree of each node is <= 4.
A centroid is a node with less than n/2 nodes in each of the incident subtrees, where n is the number of nodes in the tree. If a centroid exists it is unique.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010372 for the analogous sequence when stereoisomers are not counted as different.

Crossrefs

For even n A000628(n) = a(n) + A086200(n/2), for odd n A000628(n) = a(n), since every tree has either a centroid or a bicentroid but not both.

Programs

  • Mathematica
    c[0] = 1; f[x_, m_] := Sum[c[k] x^k, {k, 0, m}]; coes[m_] := CoefficientList[Series[f[x, m] - 1 - (x*(f[x, m]^3 + 2*f[x^3, m])/3), {x, 0, m}], x] // Rest; r[x_, m_] := r[x, m] = (f[x, m] /. Solve[Thread[coes[m] == 0]] // First); b[m_] := CoefficientList[(1/12)*(r[x, m]^4 + 3*r[x^2, m]^2 + 8*r[x, m]*r[x^3, m]), x]; a[1]=1; a[2]=0; a[n_] := b[Quotient[n-1, 2]][[n]]; Table[Print["a(", n, ") = ", an = a[n]]; an, {n, 1, 30}] (* Jean-François Alcover, Dec 29 2014 *)

Formula

Let r(x) = g.f. A(x) for A000625 truncated after the x^n term (x^0 through x^n terms only). Then coefficients of x^(2n) and x^(2n+1) in [r(x)^4 + 8 r(x^3) r(x) + 3 r(x^2)^2]/12 are terms 2n+1 and 2n+2 in current sequence..

A112442 Number of connected simple graphs with n vertices, n+7 edges, and vertex degrees no more than 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 2, 35, 707, 11477, 146428, 1530906, 13663758, 107554370, 764873164, 5004170844, 30537798974, 175688807383, 960958921848, 5030916734826
Offset: 1

Views

Author

Jonathan Vos Post, Dec 21 2005

Keywords

Crossrefs

The analogs for n+k edges with k = -1, 0, ..., 6 are: A000602, A036671, A112410, A112619, A112408, A112424, A112425, A112426. Cf. A121941.

Programs

  • nauty
    for n in {7..13}; do geng -c -D4 ${n} $((n+7)):$((n+7)) -u; done # Andrey Zabolotskiy, Nov 24 2017

Extensions

New name, offset corrected, a(11) corrected, and a(14) added by Andrey Zabolotskiy, Nov 24 2017
a(15)-a(20) added by Georg Grasegger, Jun 05 2023

A204293 Pascal's triangle interspersed with rows of zeros, and the rows of Pascal's triangle are interspersed with zeros.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 3, 0, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 6, 0, 4, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 5, 0, 10, 0, 10, 0, 5, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 0, 15, 0, 20
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 14 2012

Keywords

Comments

Auxiliary array for computing Losanitsch's triangle A034851;
T(n, k) + T(n, k + 2) = T(n + 2, k + 2) for k < n - 1.

Crossrefs

Cf. A077957 (row sums), A126869 (central terms); A108044, A007318.

Programs

  • Haskell
    a204293 n k = a204293_tabl !! n !! k
    a204293_row n = a204293_tabl !! n
    a204293_tabl = [1] : [0,0] : f [1] [0,0] where
       f xs ys = xs' : f ys xs' where
         xs' = zipWith (+) ([0,0] ++ xs) (xs ++ [0,0])
  • Mathematica
    t[n_?EvenQ, k_?EvenQ] := Binomial[n/2, k/2]; t[, ] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]] (* Jean-François Alcover, Feb 07 2012 *)

Formula

T(n, k) = (1 - n mod 2) * (1 - k mod 2) * binomial(floor(n/2),floor(k/2)).

Extensions

Formula for T(n,k) corrected by Peter Bala, Jul 06 2015

A000599 Number of secondary alcohols (alkanols or alkyl alcohols C_n H_{2n+1} OH) with n carbon atoms.

Original entry on oeis.org

0, 0, 1, 1, 3, 6, 15, 33, 82, 194, 482, 1188, 2988, 7528, 19181, 49060, 126369, 326863, 849650, 2216862, 5806256, 15256265, 40210657, 106273050, 281593237, 747890675, 1990689459, 5309397294, 14187485959, 37977600390, 101827024251
Offset: 1

Views

Author

Keywords

References

  • J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
  • Handbook of Combinatorics, North-Holland '95, p. 1963.
  • D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Henze and Blair give a recurrence.; also g.f. A(x) = x*cycle_index(S2, B(x)-1), where B(x) is g.f. for A000598.

A000678 Number of carbon (rooted) trees with n carbon atoms = unordered 4-tuples of ternary trees.

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 18, 42, 96, 229, 549, 1347, 3326, 8330, 21000, 53407, 136639, 351757, 909962, 2365146, 6172068, 16166991, 42488077, 112004630, 296080425, 784688263, 2084521232, 5549613097, 14804572332, 39568107511, 105938822149
Offset: 0

Views

Author

N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)

Keywords

Examples

			z+z^2+2*z^3+4*z^4+9*z^5+18*z^6+42*z^7+...
		

References

  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 454).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 527.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    Let T_i(z) = g.f. for ternary trees of height at most i.
    N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2,G000598)*G000598/2+subs(z=z^3,G000598)/3)+O(z^(N+1)),z,N+1): t[ i ] := G000598: i := i+1: od: # G000598 = g.f. for A000598
    i := 0: while iA000678 := n->coeff(G000678,z,n); # G000678 = g.f. for A000678.
    (this Maple program continues in A000022.)
  • Mathematica
    m = 45; (* T = G000598 *) T[] = 0; Do[T[z] = 1 + z*(T[z]^3/6 + T[z^2]*T[z]/2 + T[z^3]/3) + O[z]^m // Normal, m];
    G000678[z_] = z*(T[z]^4/24 + T[z^2]*T[z]^2/4 + T[z^2]^2/8 + T[z]*T[z^3]/3 + T[z^4]/4) + O[z]^m;
    CoefficientList[G000678[z], z] (* Jean-François Alcover, Jan 11 2018, after N. J. A. Sloane *)

Formula

G.f.: A(x) = x*cycle_index(S4, B(x)), B(x) = g.f. for A000598.
Previous Showing 41-50 of 76 results. Next