cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 84 results. Next

A374980 Number of multiset permutations of {1, 1, 2, 2, ..., n, n} with no fixed pair (j,j).

Original entry on oeis.org

1, 0, 5, 74, 2193, 101644, 6840085, 630985830, 76484389121, 11792973495032, 2254432154097861, 523368281765512930, 145044815855963403985, 47302856057098946329284, 17933275902554972391519893, 7820842217155394547769452734, 3887745712142302082441578104705
Offset: 0

Views

Author

Alois P. Heinz, Aug 05 2024

Keywords

Comments

Inverse binomial transform of A000680.

Examples

			a(2) = 5: 1212, 1221, 2112, 2121, 2211.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<3, [1, 0, 5][n+1],
         (n-1)*((2*n+1)*a(n-1)+(4*n-3)*a(n-2)+2*(n-2)*a(n-3)))
        end:
    seq(a(n), n=0..16);

Formula

a(n) = Sum_{j=0..n} (-1)^j*binomial(n,j)*A000680(n-j).
a(n) = A116218(n)/2^n.
a(n) mod 2 = 1 - (n mod 2) = A059841(n).

A067630 Denominators in power series for cos(x)*cosh(x).

Original entry on oeis.org

1, 6, 2520, 7484400, 81729648000, 2375880867360000, 151476660579404160000, 18608907752179801056000000, 4015057936610313875842560000000, 1419041926536183233139035980800000000, 778117449996850714059458989711872000000000
Offset: 0

Views

Author

Benoit Cloitre, Feb 02 2002

Keywords

Crossrefs

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) - (64*n^4-96*n^3+44*n^2-6*n)*a(n-1), a(0)=1}, a(n), remember): map(f, [$0..20]); # Georg Fischer, Aug 17 2021
  • Mathematica
    a[n_] := (4*n)!/4^n; Array[a, 10, 0] (* Amiram Eldar, Jan 18 2021 *)
  • PARI
    my(x='x+O('x^50), v=apply(denominator, Vec(cos(x)*cosh(x)))); vector(#v\4, k, v[4*k-3]) \\ Michel Marcus, Jan 18 2021

Formula

cos(x)*cosh(x) = Sum_{n>=0} (-1)^n*x^(4*n)/a(n).
a(n) = (4*n)! / 4^n = A000680(2*n).
E.g.f.: 1/(1-x^4/4). - Mohammad K. Azarian, Mar 20 2012
a(n) = n!*A060706(n). - Bruno Berselli, Mar 21 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = (cos(sqrt(2)) + cosh(sqrt(2)))/2.
Sum_{n>=0} (-1)^n/a(n) = cos(1)*cosh(1). (End)
D-finite with recurrence: a(n) - (64*n^4 - 96*n^3 + 44*n^2 - 6*n)*a(n-1) = 0. - Georg Fischer, Aug 17 2021

A210277 a(n) = (3*n)!/3^n.

Original entry on oeis.org

1, 2, 80, 13440, 5913600, 5381376000, 8782405632000, 23361198981120000, 94566133475573760000, 553211880832106496000000, 4492080472356704747520000000, 49017582114356362204938240000000, 699971072593008852286518067200000000
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 20 2012

Keywords

Crossrefs

Programs

Formula

E.g.f.: 1/(1-x^3/3).
a(n) = Product_{i=1..n} (2*binomial(3i,3)). - James Mahoney, Apr 04 2012
From Amiram Eldar, Jan 18 2021: (Start)
Sum_{n>=0} 1/a(n) = exp(3^(1/3))/3 + (2/3)*exp(-3^(1/3)/2)*cos(3^(5/6)/2).
Sum_{n>=0} (-1)^n/a(n) = exp(-3^(1/3))/3 + (2/3)*exp(3^(1/3)/2)*cos(3^(5/6)/2). (End)

A210278 (5n)!/5^n.

Original entry on oeis.org

1, 24, 145152, 10461394944, 3892643213082624, 4963587213865915514880, 16976183027980227752723742720, 132264293969742655099733137120296960, 2088743125114618199924764850166056689336320, 61246577083125859615725138685776750112964471685120
Offset: 0

Views

Author

Mohammad K. Azarian, Mar 20 2012

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(5*n)/5^n: n in [0..10]]; // Vincenzo Librandi, Feb 15 2013
  • Mathematica
    Table[(5 n)!/5^n, {n, 0, 10}] (* Vincenzo Librandi, Feb 15 2013 *)
    With[{nn=100},Take[CoefficientList[Series[1/(1-x^5/5),{x,0,nn}],x] Range[0,nn]!,{1,-1,5}]] (* Harvey P. Dale, May 27 2025 *)

Formula

E.g.f.: 1/(1-x^5/5).

A248686 Triangular array of multinomial coefficients: T(n,k) = n!/(n(1)!*n(2)!* ... *n(k)!), where n(i) = floor((n + i - 1)/k) for i = 1 .. k.

Original entry on oeis.org

1, 1, 2, 1, 3, 6, 1, 6, 12, 24, 1, 10, 30, 60, 120, 1, 20, 90, 180, 360, 720, 1, 35, 210, 630, 1260, 2520, 5040, 1, 70, 560, 2520, 5040, 10080, 20160, 40320, 1, 126, 1680, 7560, 22680, 45360, 90720, 181440, 362880, 1, 252, 4200, 25200, 113400, 226800, 453600, 907200, 1814400, 3628800
Offset: 1

Views

Author

Clark Kimberling, Oct 11 2014

Keywords

Comments

T(n,k) is the number of permutations p of [n] such that p(i)Alois P. Heinz, Feb 09 2023

Examples

			First seven rows:
  1
  1    2
  1    3     6
  1    6    12   24
  1   10    30   60    120
  1   20    90  180    360    720
  1   35   210  630   1260   2520   5040
  ...
Writing floor as [ ], the numbers comprising row 4 are
T(4,1) = 4!/[4/1]! = 24/24 = 1
T(4,2) = 4!/([4/2]![5/2]!) = 24/(2*2) = 6
T(4,3) = 4!/([4/3]![5/3]![6/3]!) = 24/(1*1*2) = 12
T(4,4) = 4!/([4/4]![5/4]![6/4]![7/4]!) = 24/(1*1*1*1) = 24.
		

Crossrefs

Main diagonal is A000142.
T(2n,n) gives A000680.
Row sums give A248687.
Cf. A333706.

Programs

  • Maple
    T:= (n, k)-> combinat[multinomial](n, floor((n+i)/k)$i=0..k-1):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Feb 09 2023
  • Mathematica
    f[n_, k_] := f[n, k] = n!/Product[Floor[(n + i)/k]!, {i, 0, k - 1}]
    t = Table[f[n, k], {n, 0, 10}, {k, 1, n}];
    u = Flatten[t]  (* A248686 sequence *)
    TableForm[t]    (* A248686 array *)
    Table[Sum[f[n, k], {k, 1, n}], {n, 1, 22}] (* A248687 *)

A267480 Number T(n,k) of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 5, 0, 1, 42, 47, 0, 1, 351, 1527, 641, 0, 1, 3113, 43910, 54987, 11389, 0, 1, 29003, 1302660, 3844840, 2059147, 248749, 0, 1, 280220, 40970298, 265777225, 285588543, 82025038, 6439075, 0, 1, 2782475, 1364750889, 19104601915, 37783672691, 19773928713, 3507289363, 192621953
Offset: 0

Views

Author

Alois P. Heinz, Jan 15 2016

Keywords

Examples

			Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,      5;
  0, 1,     42,       47;
  0, 1,    351,     1527,       641;
  0, 1,   3113,    43910,     54987,     11389;
  0, 1,  29003,  1302660,   3844840,   2059147,   248749;
  0, 1, 280220, 40970298, 265777225, 285588543, 82025038, 6439075;
		

Crossrefs

Main diagonal gives A006902.
Row sums give A000680.

Formula

T(n,0) = A267479(n,0), T(n,k) = A267479(n,k) - A267479(n,k-1) for k>0.
Sum_{k=0..n-1} T(n,k) = A267532(n).

A267532 Number of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length < n.

Original entry on oeis.org

0, 0, 1, 43, 1879, 102011, 7235651, 674641325, 81537026047, 12498099730471, 2375632826877259, 548818073236649129, 151476182218777630655, 49229890784448694885163, 18608906461974462064310179, 8094874797394331233877338741, 4015057931973886657462193434111
Offset: 0

Views

Author

Alois P. Heinz, Jan 16 2016

Keywords

Comments

Or number of words on {1,1,2,2,...,n,n} avoiding the pattern 12...n.

Examples

			a(2) = 1: 2211.
a(3) = 43: 113322, 131322, 133122, 133212, 133221, 211332, 213132, 213312, 213321, 221133, 221313, 221331, 223113, 223131, 223311, 231132, 231312, 231321, 232113, 232131, 232311, 233112, 233121, 233211, 311322, 313122, 313212, 313221, 321132, 321312, 321321, 322113, 322131, 322311, 323112, 323121, 323211, 331122, 331212, 331221, 332112, 332121, 332211.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1], (
          (n^3+n^2-7*n+4)*b(n-1)-2*(2*n-3)*(n-1)^3*b(n-2))/(n-2))
        end:
    a:= n-> (2*n)!/(2^n)-b(n):
    seq(a(n), n=0..20);

Formula

a(n) = (2*n)! * ( 1/(2^n) - Sum_{k=0..n} (-1)^k * C(n,k) / (n+k)! ).
a(n) = A000680(n) - A006902(n).
a(n) = A267479(n,n-1) for n>0.
a(n) = Sum_{k=0..n-1} A267480(n,k).

A375223 a(n) is the number of permutations of the multiset 1,1, 2,2, ..., n,n such that at least one pair k,k stays at its initial locations 2k-1, 2k.

Original entry on oeis.org

1, 1, 16, 327, 11756, 644315, 50094570, 5245258879, 711662648968, 121448713262139, 25460198594647070, 6431844723440756015, 1927058631207405670716, 675631849624828664480107, 274032655042818911590547266, 127312224468011793400981895295, 67167619760422081463964260973200
Offset: 1

Views

Author

Hugo Pfoertner, Aug 05 2024

Keywords

Examples

			a(3) = 16: The 15 permutations with one stable pair (see A375222) and the starting configuration [1, 1, 2, 2, 3, 3].
		

Crossrefs

Cf. A000680 (all permutations of this multiset), A375222 (exactly one stable pair), A374980.

Programs

  • PARI
    a375223(n) = {my (p=vector(2*n,i,1+(i-1)\2), m=0); forperm (p, q, for (j=1, n, if (q[2*j-1]==j && q[2*j]==j, m++; break))); m}

Formula

a(n) = Sum_{j=1..n} binomial(n,j) * A374980(n-j). - Alois P. Heinz, Aug 05 2024

Extensions

a(8) onwards from Alois P. Heinz, Aug 05 2024

A059117 Square array of lambda(k,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly k starting and/or finishing points.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 6, 24, 1, 0, 0, 0, 0, 0, 114, 78, 1, 0, 0, 0, 0, 0, 180, 978, 240, 1, 0, 0, 0, 0, 0, 90, 4320, 6810, 726, 1, 0, 0, 0, 0, 0, 0, 8460, 63540, 43746, 2184, 1, 0, 0, 0, 0, 0, 0, 7560, 271170, 774000, 271194, 6558, 1
Offset: 0

Views

Author

Henry Bottomley, Jan 05 2001

Keywords

Examples

			Rows are: 1,0,0,0,0,0,....; 0,0,1,0,0,0,....; 0,0,1,6,6,0,....; 0,0,1,24,114,180,.... etc.
		

Crossrefs

Sum of rows gives A055203. Columns include A000007, A057427, A058809, A059116. Final positive number in each row is A000680.

Programs

  • Mathematica
    A[ n_, k_] := If[n < 1 || k < 1, Boole[n == 0 && k == 0], n! k! Coefficient[ Normal[ Series[ Sum[ Exp[-x z] (x z)^m/m! Exp[y z m (m - 1)/2], {m, 0, n}], {z, 0, n + k}]], x^n y^k z^(n + k)]]; (* Michael Somos, Jul 17 2019 *)

Formula

lambda(k, n) = (lambda(k - 2, n - 1) + 2*lambda(k - 2, n - 1) + lambda(k - 2, n - 1))*k*(k - 1)/2 starting with lambda(k, 0) = 1 if k = 0 but = 0 otherwise. lambda(k, n) = sum_{j=0..k} (-1)^(k + j) * C(k, j) * ((j - 1)*j/2)^n.

A059515 Square array T(k,n) by antidiagonals, where T(k,n) is number of ways of placing n identifiable nonnegative intervals with a total of exactly k starting and/or finishing points.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 7, 1, 0, 0, 0, 12, 25, 1, 0, 0, 0, 6, 138, 79, 1, 0, 0, 0, 0, 294, 1056, 241, 1, 0, 0, 0, 0, 270, 5298, 7050, 727, 1, 0, 0, 0, 0, 90, 12780, 70350, 44472, 2185, 1, 0, 0, 0, 0, 0, 16020, 334710, 817746, 273378, 6559, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Henry Bottomley, Jan 19 2001

Keywords

Comments

See A300729 for a triangular version of this array. - Peter Bala, Jun 13 2019

Examples

			Rows are: 1,0,0,0,0,..., 0,1,1,0,0,..., 0,1,7,12,6,..., 0,1,25,138,294,..., etc. T(1,1)=1 since if a is starting point of interval and A is end point then only possibility is aA (zero length). T(2,1)=1 since possibility is a-A (positive length). T(3,2)=12 since possibilities are: aA-b-B, b-aA-B, b-B-aA, bB-a-A, a-bB-A, a-A-bB, ab-A-B, ab-B-A, a-b-AB, b-a-AB, a-bA-B, b-a-AB.
		

Crossrefs

Sum of rows gives A059516. Columns include A000007, A057427, A058481, A059117. Final positive number in each row is A000680.
Cf. A300729.

Formula

T(k, n) = T(k - 2, n - 1) * k * (k - 1)/2 + T(k - 1, n - 1) * k^2 + T(k, n - 1) * k * (k + 1)/2 with T(0, 0) = 1 = lambda(k, n) + lambda(k + 1, n) where lambda is A059117(k, n).
Previous Showing 31-40 of 84 results. Next