cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A005288 a(n) = C(n,5) + C(n,4) - C(n,3) + 1, n >= 7.

Original entry on oeis.org

3, 22, 71, 169, 343, 628, 1068, 1717, 2640, 3914, 5629, 7889, 10813, 14536, 19210, 25005, 32110, 40734, 51107, 63481, 78131, 95356, 115480, 138853, 165852, 196882, 232377, 272801, 318649, 370448, 428758, 494173, 567322
Offset: 6

Views

Author

Keywords

References

  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, p. 15.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A008302.

Programs

  • Mathematica
    Join[{3},Table[Binomial[n,5]+Binomial[n,4]-Binomial[n,3]+1,{n,7,50}]] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1},{3,22,71,169,343,628,1068},50] (* Harvey P. Dale, Aug 30 2021 *)

Formula

a(n) = C(n+3, 5) - C(n+2, 3) + C(n, 0).
G.f.: 3*x^6 -x^7*(x-2)*(2*x^4-11*x^3+24*x^2-25*x+11)/(x-1)^6. Simon Plouffe in his 1992 dissertation
a(n) = (n+4)*(n-3)*(n^3-6*n^2+3*n-10)/120, n >= 7. - R. J. Mathar, May 19 2013

A005287 Number of permutations of [n] with four inversions.

Original entry on oeis.org

5, 20, 49, 98, 174, 285, 440, 649, 923, 1274, 1715, 2260, 2924, 3723, 4674, 5795, 7105, 8624, 10373, 12374, 14650, 17225, 20124, 23373, 26999, 31030, 35495, 40424, 45848, 51799, 58310, 65415, 73149, 81548, 90649, 100490, 111110, 122549, 134848, 148049
Offset: 4

Views

Author

Keywords

Examples

			[2, 4, 3, 1], [3, 2, 4, 1], [3, 4, 1, 2], [4, 1, 3, 2], [4, 2, 1, 3] have 4 inversions.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 255, #2, b(n,4).
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 241.
  • R. K. Guy, personal communication.
  • E. Netto, Lehrbuch der Combinatorik. 2nd ed., Teubner, Leipzig, 1927, p. 96.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Exercise 1.30, p. 49.

Crossrefs

Programs

  • Magma
    [n*(n+1)*(n^2+n-14)/24: n in [4..50]]; // Vincenzo Librandi, Jul 17 2011
  • Maple
    [seq(binomial(n,4)+binomial(n,3)-binomial(n,2), n=5..43)]; # Zerinvary Lajos, Jul 23 2006
  • Mathematica
    CoefficientList[Series[(z^4 - 3*z^3 + z^2 + 5*z - 5)/(z - 1)^5, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *)
    LinearRecurrence[{5,-10,10,-5,1},{5,20,49,98,174},40] (* Harvey P. Dale, Aug 25 2016 *)
  • PARI
    a(n)=if(n<4,0,n*(n+1)*(n^2+n-14)/24)
    

Formula

a(n) = n*(n+1)*(n^2+n-14)/24.
G.f.: x^4*(-5 + 5*x + x^2 - 3*x^3 + x^4) / (x-1)^5. - Simon Plouffe in his 1992 dissertation
a(n) = binomial(n+1,4) + binomial(n+1,3) - binomial(n+1,2). - Zerinvary Lajos, Jul 23 2006

A022579 Expansion of Product_{m>=1} (1+x^m)^14.

Original entry on oeis.org

1, 14, 105, 574, 2576, 10052, 35273, 113794, 342699, 974176, 2635955, 6833540, 17061345, 41197422, 96544003, 220212384, 490104727, 1066552228, 2273590095, 4755188704, 9771319068, 19751596934, 39317784863, 77150246040, 149357609184, 285497384004, 539227765104, 1006978117880
Offset: 0

Views

Author

Keywords

Crossrefs

Column k=14 of A286335. Cf. A000707, A023003.

Programs

  • Magma
    Coefficients(&*[(1+x^m)^14:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
  • Mathematica
    nmax=50; CoefficientList[Series[Product[(1+q^m)^14,{m,1,nmax}],{q,0,nmax}],q] (* Vaclav Kotesovec, Mar 05 2015 *)
  • PARI
    m=50; q='q+O('q^m); Vec(prod(n=1,m,(1+q^n)^14)) \\ G. C. Greubel, Feb 25 2018
    

Formula

a(n) ~ (7/6)^(1/4) * exp(Pi * sqrt(14*n/3)) / (256 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (14/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 03 2017
G.f. A(x) = (1/2)*( G(sqrt(x)) + G(-sqrt(x)) )/G(x^4), where G(x) = Product_{n >= 1} 1/(1 - x^n)^4 is the g.f. of A023003 (see also A000727). - Peter Bala, Oct 05 2023

A060701 Table by antidiagonals of Mahonian numbers T(n,k): permutations of n letters with k inversions.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 2, 3, 1, 0, 0, 1, 5, 4, 1, 0, 0, 0, 6, 9, 5, 1, 0, 0, 0, 5, 15, 14, 6, 1, 0, 0, 0, 3, 20, 29, 20, 7, 1, 0, 0, 0, 1, 22, 49, 49, 27, 8, 1, 0, 0, 0, 0, 20, 71, 98, 76, 35, 9, 1, 0, 0, 0, 0, 15, 90, 169, 174, 111, 44, 10, 1, 0, 0, 0, 0, 9, 101, 259, 343, 285
Offset: 0

Views

Author

Henry Bottomley, Apr 25 2001

Keywords

Examples

			1;
0,1;
0,1,1;
0,0,2,1;
0,0,2,3,1;
0,0,1,5,4,1;
0,0,0,6,9,5,1; ...
[1, 4, 2, 3], [1, 3, 4, 2], [2, 1, 4, 3], [2, 3, 1, 4], [3, 1, 2, 4] have 2 inversions so T(4, 2)=5.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see Corollary 1.3.10, p. 21.

Crossrefs

A008302 is the main entry for these numbers. Columns include A000012, A000027, A000096, A005286, A005287, A005288. Diagonals include A000707, A001892, A001893, A001894, A005283, A005284, A005285.

Programs

  • PARI
    T(n,k)=polcoeff(prod(j=1,n-1,sum(i=0,j,x^i)),k)

Formula

T(n, k)=sum_{j=0..n}[T(n-1, k-j)].
Product (1+x+...+x^k), k=1..n-1 = Sum T(n, k)x^k, k=0..n(n-1)/2.

Extensions

Additional comments from Michael Somos, Jun 23 2002.

A129481 a(n) = coefficient of x^n in n!*Product_{k=0..n} [Sum_{j=0..k} x^j/j! ].

Original entry on oeis.org

1, 1, 3, 19, 175, 2111, 31321, 550810, 11194177, 258068893, 6653230111, 189653427206, 5922604033567, 201075967613262, 7373834652641003, 290474615891145106, 12232735359488840833, 548429151685677131389
Offset: 0

Views

Author

Paul D. Hanna, Apr 17 2007

Keywords

Comments

a(n) is also the number of ordered submultisets of A000707. - J. M. Bergot, Aug 13 2016

Examples

			a(2) = [x^2] 2!*(1)*(1+x)*(1+x+x^2/2!) = [x^2] (2 +4*x +3*x^2 +x^3) = 3.
a(3) = [x^3] 3!*(1)*(1+x)*(1 + x + x^2/2!)*(1 + x + x^2/2! + x^3/3!) =
[x^3] (6 + 18*x + 24*x^2 + 19*x^3 +...) = 19.
		

Crossrefs

Cf. A000707.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m+2);
    p:= func< n,x | (&*[ (&+[x^j/Factorial(j): j in [0..k]]) : k in [0..n]]) >;
    A129481:= func< n | Coefficient(R!(Laplace( p(n,x) )), n) >;
    [A129481(n): n in [0..m]]; // G. C. Greubel, Feb 12 2024
    
  • Mathematica
    Flatten[{1,Table[Coefficient[Expand[n!*Product[Sum[x^j/j!,{j,0,k}],{k,0,n}]],x^n],{n,1,20}]}] (* Vaclav Kotesovec, Feb 10 2015 *)
  • PARI
    {a(n)=n!*polcoeff(prod(k=0,n,sum(j=0,k,x^j/j!)+x*O(x^n)),n)}
    
  • SageMath
    def p(n,x): return product(sum(x^j/factorial(j) for j in range(k+1)) for k in range(n+1))
    def A129481(n): return factorial(n)*( p(n,x) ).series(x, 101).list()[n]
    [A129481(n) for n in range(31)] # G. C. Greubel, Feb 13 2024

Formula

a(n) ~ c * n^n, where c = 0.660942456683588459181273625114230472913... . - Vaclav Kotesovec, Feb 10 2015

A382454 Number of solutions winning the Tchoukaillon game with n seeds and 2n pits.

Original entry on oeis.org

1, 2, 9, 49, 285, 1717, 10569, 66013, 416687, 2651355, 16976806, 109256095, 706071989, 4579020513, 29784426945, 194231327451, 1269457354069, 8313189986612, 54534379879411, 358298017624625, 2357331709694072, 15528887031395023, 102412421113465576, 676104332189192702
Offset: 0

Views

Author

Darío Clavijo, May 26 2025

Keywords

Comments

a(n) is the number of permutations of [2n+1] with n inversions. a(2) = 9: 12453, 12534, 13254, 13425, 14235, 21354, 21435, 23145, 31245. - Alois P. Heinz, May 27 2025

Crossrefs

Programs

  • Maple
    a:= n-> coeff(series(mul((1-q^j)/(1-q), j=1..2*n+1), q, n+1), q, n):
    seq(a(n), n=0..23);  # Alois P. Heinz, May 27 2025
  • Mathematica
    a[n_]:=Coefficient[Series[Product[(1-q^j)/(1-q),{j,1,2*n+1}],{q,0,n+1}]//Normal,q,n];Array[a, 24, 0] (* Shenghui Yang, Jun 02 2025 *)
  • Python
    def a(n):
        if n == 0: return 1
        p = [1]
        for j in range(1, (n << 1) + 2):
            np = [0] * (len(p) + j - 1)
            for k in range(len(p)):
                for l in range(j):
                    if (kl:=k+l) <= n:
                        np[kl] += p[k]
            p = np[:n+1]
        return p[n]
    print([a(n) for n in range(1,24)])

Formula

a(n) = T(2n,n) with T(x,y) = Sum_{v=0..min(x,y)} T(x-1, y-v) and T(0,y) = 1 if y = 0 else 0.
a(n) = A008302(2n+1,n).
Previous Showing 11-16 of 16 results.