cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A258404 Decimal expansion of Integral_{x=0..1} Product_{k>=1} (1-x^k)^4 dx.

Original entry on oeis.org

1, 6, 1, 8, 2, 0, 2, 4, 2, 2, 9, 4, 8, 5, 6, 5, 6, 1, 8, 0, 2, 6, 1, 3, 3, 4, 9, 8, 5, 7, 8, 6, 5, 3, 4, 3, 1, 3, 0, 6, 8, 5, 7, 8, 2, 8, 8, 0, 1, 8, 9, 9, 0, 3, 9, 8, 0, 4, 2, 9, 4, 5, 3, 5, 7, 9, 5, 3, 4, 1, 5, 3, 8, 0, 4, 3, 7, 1, 4, 8, 9, 6, 8, 8, 5, 3, 3, 7, 1, 2, 9, 9, 2, 1, 5, 8, 5, 4, 4, 8, 5, 2, 1, 8, 9, 9
Offset: 0

Views

Author

Vaclav Kotesovec, May 29 2015

Keywords

Examples

			0.16182024229485656180261334985786534313068578288018990398...
		

Crossrefs

Programs

  • Maple
    evalf(Sum((2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)), m=-infinity..infinity), 120); # Vaclav Kotesovec, Dec 04 2015
  • Mathematica
    nmax=200; p=1; q4=Table[PrintTemporary[n]; p=Expand[p*(1-x^n)^4]; Total[CoefficientList[p,x]/Range[1,Exponent[p,x]+1]],{n,1,nmax}]; q4n=N[q4,1000]; Table[SequenceLimit[Take[q4n,j]],{j,Length[q4n]-100,Length[q4n],10}]
    NSum[2*(-1)^m*Pi/Cosh[Sqrt[7 - 4*m + 12*m^2]*Pi/2], {m, -Infinity, Infinity}, WorkingPrecision -> 120, NSumTerms -> 100] (* Vaclav Kotesovec, Dec 04 2015 *)
    RealDigits[NIntegrate[QPochhammer[x]^4, {x, 0, 1}, WorkingPrecision -> 120], 10, 106][[1]] (* Vaclav Kotesovec, Oct 10 2023 *)
  • PARI
    default(realprecision, 93);
    b(n) = cosh(sqrt(7 - 4*n + 12*n^2)*Pi/2);
    2*Pi*(1/b(0) + sumalt(n=1, (-1)^n*(1/b(n) + 1/b(-n)))) \\ Gheorghe Coserea, Sep 26 2018

Formula

Sum_{m = -infinity..infinity} (2*Pi*(-1)^m / cosh(sqrt(7 - 4*m + 12*m^2)*Pi/2)). - Vaclav Kotesovec, Dec 04 2015

Extensions

More digits from Vaclav Kotesovec, Oct 10 2023

A272198 The p-defect p - N(p) of the congruence y^2 == x^3 + 1 (mod p) for primes p, where N(p) is the number of solutions given by A272197(n).

Original entry on oeis.org

0, 0, 0, -4, 0, 2, 0, 8, 0, 0, -4, -10, 0, 8, 0, 0, 0, 14, -16, 0, -10, -4, 0, 0, 14, 0, 20, 0, 2, 0, 20, 0, 0, -16, 0, -4, 14, 8, 0, 0, 0, 26, 0, 2, 0, -28, -16, -28, 0, -22, 0, 0, 14, 0, 0, 0, 0, -28, 26, 0
Offset: 1

Views

Author

Wolfdieter Lang, May 02 2016

Keywords

Comments

This sequence for an elliptic curve (of the Bachet-Mordell type) is discussed in the Silverman reference. In Exercise 45.5, in the table on p. 405, the p-defects are called a_p, and are shown for primes 2 to 113.
The modularity pattern series is the expansion of the 51st modular cusp form of weight 2 and level N=36, given in the table I of the Martin reference, i.e., eta^4(6*z) in powers of q = exp(2*Pi*i*z), with Im(z) > 0. Here eta is the Dedekind function. See A000727 for the expansion in powers of q^6 (after deleting a factor q^(1/6)). Note that also for the possibly bad prime 2 and the bad prime 3 this expansion gives the correct numbers 0 (the discriminant of this elliptic curve is -3^3).
See also the comment on the Martin-Ono reference in A272197 which implies that eta^4(6*z) provides the modularity sequence for this elliptic curve.
For primes p == 0 and 2 (mod 3) (A045309) a(p) = 0. The proof runs along the same line as the one given in the Silverstein reference on pp. 400 - 402 for 17 replaced by 1. From the expansion of the known modularity function eta^4(6*z) follows that only the coefficients for powers q^n with n == 1 (mod 6) are nonzero, and therefore all a(p) for primes p == 0 and 2 (mod 3) have to vanish.
If prime(n) == 1 (mod 3) = A002476(m) (for a unique m = m(n)) then prime(n) = A(m)^2 + 3*B(m)^2 with A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. In this case (4*prime(n) - a(n)^2)/12, seems to be a square, q(m)^2. In fact is seems that (the positive) q(m) = B(m). This is true at least for the first 80 primes 1 (mod 3), i.e. for such primes <= 997. (In the Silverman reference, in hint c) for Exercise 4.5, on p. 405, a more complicated way is suggested: 4*p is decomposed there non-uniquely instead of p uniquely.) If this conjecture is true then a(n) = 2*(+/-sqrt(prime(n) - 3*B(m)^2)) = +- 2*A(m) for prime(n) = A002476(m). This leads to a bisection of the primes 1 (mod 3) into two types: type I if the + sign applies, and type II for the - sign. Primes of type I are given in A272200: 13, 19, 43, 61, 97, ... and those of type II in A272201: 7, 31, 37, 67, 73, ...

Examples

			a(1) = 2 - A272197(1) = 0, and 2 == 2(mod 3).
a(4) = 7 - A272197(4) = 7 - 11 = -4, and 7 = A002476(1) = 2^2 + 3*1^2, 2 = A001479(1+1), 7 = A272201(1), hence a(4) = -2*2 = -4.
a(6) = 13 - A272197(6) = 13 - 11 = 2, and 13 = A002476(2) = 1^2 + 3*2^2; 1 = A001479(2+1), 13 = A272200(1), hence a(6) = +2*1 = +2.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415, and pp. 400 - 402 (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385, and pp. 366 - 368).

Crossrefs

Formula

a(n) = prime(n) - N(prime(n)), n = 1, where N(prime(n)) = A272197(n), the number of solutions of the congruence y^2 == x^3 + 1 (mod prime(n)).
a(n) = 0 for prime(n) == 0, 2 (mod 3) (see A045309).
The above given conjecture for primes 1 (mod 3) is true because Mordell proved the Ramanujan conjecture on the expansion coefficients of eta^4(6*z), and with the present a(n) the result of Ramanujan follows. See the references and a comment on A000727.
a(n) = +2*A001479(m+1) if prime(n) == A002476(m) (m is unique) is a prime of A272200 (type I).
a(n) = -2*A001479(m+1) if prime(n) == A002476(m) is from A272201 (type II).
See a comment above for the bisection of the primes 1 (mod 3) into type I and II.

A000730 Expansion of Product_{n>=1} (1 - x^n)^7.

Original entry on oeis.org

1, -7, 14, 7, -49, 21, 35, 41, -49, -133, 98, -21, 126, 112, -176, -105, -126, 140, -35, 147, 259, 98, -420, -224, 238, -455, 273, -14, 322, 406, -35, -7, -637, -196, 245, -181, -574, 462, 147, 924, 217, -329, -140, -7, -371, -777
Offset: 0

Views

Author

Keywords

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

Formula

a(0) = 1, a(n) = -(7/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 26 2017
G.f.: exp(-7*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A153728 Expansion of q^(-1/3) * (eta(q)^8 + 8 * eta(q^4)^8) in powers of q^2.

Original entry on oeis.org

1, 20, -70, 56, -125, 308, 110, -520, 57, 0, 182, -880, 1190, 884, 0, -1400, -1330, 1820, -646, 0, -1331, 380, 1120, 2576, 0, 1748, -3850, -3400, 2703, -2500, 3458, 0, -1150, -5236, 0, 6032, 6160, -3220, 4466, 0, -7378, -3920, 0, 2200, 0, 812, -4030, 5600, -4913
Offset: 0

Views

Author

Michael Somos, Dec 31 2008

Keywords

Comments

This is a member of an infinite family of integer weight modular forms. g_1 = A097195, g_2 = A000727, g_3 = A152243, g_4 = A153728. - Michael Somos, Jun 10 2015

Examples

			G.f. = 1 + 20*x - 70*x^2 + 56*x^3 - 125*x^4 + 308*x^5 + 110*x^6 - 520*x^7 + ...
G.f. = q + 20*q^7 - 70*q^13 + 56*q^19 - 125*q^25 + 308*q^31 + 110*q^37 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( CuspForms( Gamma0(36), 4), 289); A[1] + 20*A[7] - 70*A[12]; /* Michael Somos, Jun 10 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x]^8 + 8 x QPochhammer[ x^4]^8, {x, 0, 2 n}]; (* Michael Somos, Jun 10 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, n *= 2; A = x * O(x^n); polcoeff( eta(x + A)^8 + 8 * x * eta(x^4 + A)^8, n))};
    
  • PARI
    {a(n) = my(A, p, e, x, y, a0, a1); if( n<0, 0, n = 6*n + 1; A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k,]; if( p<5, 0, p%6==5, if( e%2, 0, (-p)^(3*e/2)), for(x=1, sqrtint(p\3), if( issquare(p-3*x^2, &y), break)); if( y%3!=1, y=-y); y*=2; y = y^3 - 3*p*y; a0=1; a1=y; for(i=2, e, x = y*a1 - p^3*a0; a0=a1; a1=x); a1)))}; /* Michael Somos, Jun 10 2015 */
    

Formula

a(n) = b(6*n + 1) where b(n) is multiplicative with b(2^e) = b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 * (-1)^(e/2) * p^(3*e/2) if p == 5 (mod 6), b(p^e) = b(p) * b(p^(e-1)) - b(p^(e-2)) * p^3 if p == 1 (mod 6) where b(p) = (x^2 - 3*p)*x, 4*p = x^2 + 3*y^2, |x| < |y| and x == 2 (mod 3).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 648 (t/i)^4 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A153729.
a(n) = A000731(2*n) = A153729(2*n) = A161969(2*n). - Michael Somos, Jun 10 2015

A010817 Expansion of Product_{k>=1} (1 - x^k)^9.

Original entry on oeis.org

1, -9, 27, -12, -90, 135, 54, -99, -189, -85, 657, -162, -135, -171, -810, 702, 495, 837, -673, -900, 243, -1053, -297, 1566, 2700, -1764, 81, -1188, -1377, 270, -2043, 3321, -756, 3726, 3015, -4563, -3348, 504, -351, -1350, -468
Offset: 0

Views

Author

Keywords

References

  • Newman, Morris; A table of the coefficients of the powers of eta(tau). Nederl. Akad. Wetensch. Proc. Ser. A. 59 = Indag. Math. 18 (1956), 204-216.

Crossrefs

Cf. A000203.

Programs

Formula

a(0) = 1, a(n) = -(9/n)*Sum_{k=1..n} A000203(k)*a(n-k) for n > 0. - Seiichi Manyama, Mar 27 2017
G.f.: exp(-9*Sum_{k>=1} x^k/(k*(1 - x^k))). - Ilya Gutkovskiy, Feb 05 2018

A272197 Number of solutions of the congruence y^2 == x^3 + 1 (mod p) as p runs through the primes.

Original entry on oeis.org

2, 3, 5, 11, 11, 11, 17, 11, 23, 29, 35, 47, 41, 35, 47, 53, 59, 47, 83, 71, 83, 83, 83, 89, 83, 101, 83, 107, 107, 113, 107, 131, 137, 155, 149, 155, 143, 155, 167, 173, 179, 155, 191, 191, 197, 227, 227, 251, 227, 251, 233, 239, 227, 251, 257, 263, 269, 299, 251, 281
Offset: 1

Views

Author

Wolfdieter Lang, May 02 2016

Keywords

Comments

This elliptic curve is discussed in the Silverman reference. In the table the p-defects prime(n) - a(n) are shown for primes 2 to 113.
In the Martin and Ono reference, in Theorem 2, this elliptic curve appears in the eighth row, starting with Conductor 36, as a strong Weil curve for the weight 2 newform eta(6*z)^4, with Im(z) > 0, and the Dedekind eta function. See A000727 which gives the q-expansion (q = exp(2*Pi*i*z)) of exp(-Pi*i*z/3)*eta(z)^4. For the q-expansion of eta(6*z)^4 one has 5 interspersed 0's: 0,1,0,0,0,0,0,-4,0,0,0,0,0,2,0,0,0,0,0,8,...
The discriminant of this elliptic curve is -3^3 = -27.

Examples

			The first nonnegative complete residue system {0, 1, ..., prime(n)-1} is used. The solutions (x, y) of y^2  == x^3 + 1 (mod prime(n)) begin:
n, prime(n), a(n)\  solutions (x, y)
1,   2,       2:  (0, 1), (1, 0)
2,   3,       3:  (0, 1), (0, 2), (2, 0)
3,   5,       5:  (0, 1), (0, 4), (2, 2),
                  (2, 3), (4, 0)
4,   7,      11:  (0, 1), (0, 6), (1, 3),
                  (1, 4), (2, 3), (2, 4),
                  (3, 0), (4, 3), (4, 4),
                  (5, 0), (6, 0)
5,  11,      11:  (0, 1), (0, 10), (2, 3),
                  (2, 8), (5, 4), (5, 7),
                  (7, 5), (7, 6), (9, 2),
                  (9, 9), (10, 0)
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415. (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385).

Crossrefs

Formula

a(n) gives the number of solutions of the congruence y^2 == x^3 + 1 (mod prime(n)), n >= 1.

A272200 Bisection of primes congruent to 1 modulo 3 (A002476), depending on the corresponding A001479 entry being congruent to 1 modulo 3 or not. Here the first case.

Original entry on oeis.org

13, 19, 43, 61, 97, 103, 109, 127, 157, 163, 181, 193, 241, 277, 283, 331, 349, 373, 379, 409, 433, 463, 487, 499, 523, 601, 607, 619, 631, 661, 673, 691, 727, 733, 757, 769, 787, 811, 859, 883, 937, 967, 991
Offset: 1

Views

Author

Wolfdieter Lang, Apr 28 2016

Keywords

Comments

The other primes congruent to 1 modulo 3 are given in A272201.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives such primes corresponding to A(m+1) == 1 (mod 3). The ones corresponding to A(m+1) not == 1 (mod 3) (the complement) are given in A272201.
This bisection of the primes from A002476 is needed in the formula for the coefficients of the q-expansion (q = exp(2*Pi*i*z), Im(z) > 0) of the modular cusp form (eta(6*z))^4|A000727%20which%20gives%20the%20coefficients%20of%20the%20q-expansion%20of%20F(q)%20=%20Eta64(q%5E(1/6))/q%5E(1/6)%20=%20(Product">{z=z(q)} = Eta64(q) with Dedekind's eta function. See A000727 which gives the coefficients of the q-expansion of F(q) = Eta64(q^(1/6))/q^(1/6) = (Product{m>=0} (1 - q^m))^4. The coefficients F(q) = Sum_{n>=0} f(6*n+1)*q^n are given in the Finch link on p. 5, using multiplicativity. For primes congruent to 1 modulo 6 the formula involves x_p and y_p which are the present A and B for prime p == 1 (mod 3).
See also the p-defects of the elliptic curve y^2 = x^3 + 1, related to (eta(6*z))^4, given in A272198 with another (equivalent) way to find the coefficients of the Eta64(q) expansion, hence those of F(q).

Crossrefs

Cf. A000727, A001479, A002476, A001480, A272198, A272201 (complement relative to A002476).

Programs

  • Maple
    filter:= proc(n) local S,x,y;
        if not isprime(n) then return false fi;
        S:= remove(hastype,[isolve(x^2+3*y^2=n)],negative);
        subs(S[1],x) mod 3 = 1
    end proc:
    select(filter, [seq(i,i=7..1000,6)]); # Robert Israel, Apr 29 2019
  • Mathematica
    filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[[1]], 3] == 1];
    Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *)

Formula

This sequence collects the 1 (mod 3) primes p(m) = A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) == 1 (mod 3), for m >= 1. A(m) = A001479(m+1).

A272201 Bisection of primes congruent to 1 modulo 3 (A002476), depending on the corresponding A001479 entry being congruent to 1 modulo 3 or not. Here the second case.

Original entry on oeis.org

7, 31, 37, 67, 73, 79, 139, 151, 199, 211, 223, 229, 271, 307, 313, 337, 367, 397, 421, 439, 457, 541, 547, 571, 577, 613, 643, 709, 739, 751, 823, 829, 853, 877, 907, 919, 997
Offset: 1

Views

Author

Wolfdieter Lang, Apr 28 2016

Keywords

Comments

The other primes congruent to 1 modulo 3 are given in A272200, where also more details are given.
Each prime == 1 (mod 3) has a unique representation A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1 (see also A001479). The present sequence gives these primes corresponding to A(m+1) not congruent 1 modulo 3. The ones corresponding to A(m+1) == 1 (mod 3) (the complement) are given in A272200.

Crossrefs

Cf. A000727, A001479, A002476, A001480, A272198, A272200 (complement relative to A002476).

Programs

  • Maple
    filter:= proc(n) local S,x,y;
        if not isprime(n) then return false fi;
        S:= remove(hastype,[isolve(x^2+3*y^2=n)],negative);
        subs(S[1],x) mod 3 <> 1
    end proc:
    select(filter, [seq(i,i=7..1000,6)]); # Robert Israel, Apr 29 2019
  • Mathematica
    filterQ[n_] := Module[{S, x, y}, If[!PrimeQ[n], Return[False]]; S = Solve[x > 0 && y > 0 && x^2 + 3 y^2 == n, Integers]; Mod[x /. S[[1]], 3] != 1];
    Select[Range[7, 1000, 6], filterQ] (* Jean-François Alcover, Apr 21 2020, after Robert Israel *)

Formula

This sequence collects the 1 (mod 3) primes p(m) = A002476(m) = A(m)^2 + 3*B(m)^2 with positive A(m) not == 1 (mod 3), for m >= 1. A(m) = A001479(m+1).

A272203 P-defects p - N(p) of the congruence y^2 == x^3 - 1 (mod p) for primes p, where N(p) is the number of solutions given by A272202(n).

Original entry on oeis.org

0, 0, 0, 4, 0, 2, 0, -8, 0, 0, 4, -10, 0, -8, 0, 0, 0, 14, 16, 0, -10, 4, 0, 0, 14, 0, -20, 0, 2, 0, -20, 0, 0, 16, 0, 4, 14, -8, 0, 0, 0, 26, 0, 2, 0, 28, 16, 28, 0, -22, 0, 0, 14, 0, 0, 0, 0, 28, 26, 0, -32, 0, 16, 0, -22, 0, -32, -34, 0, 14, 0, 0, 4, 38, -8, 0, 0, -34, 0, 38, 0, -22, 0, 2, 28, 0, 0, -10, 0, -20, 0, 0, -44, 0, -32, 0, 0, 0, -8, -46, 40, 0, 0, 0, 16, -46
Offset: 1

Views

Author

Wolfdieter Lang, May 05 2016

Keywords

Comments

The analysis of this elliptic curve runs along the same lines as in A000727, A272197 and A272198, and it is inspired by the Silverman reference where the curve y^2 = x^3 + 1 modulo primes is treated.
The series showing the modularity pattern is the expansion of the 67th modular cusp form of weight 2 and level N=144, given in the table I of the Martin reference, i.e., eta^{12}(12*z)/( eta^4(6*z)*eta^4(24*z)), symbolically 12^{12} 6^(-4) 24^{-4}, in powers of q = exp(2*Pi*i*z), with Im(z) > 0. Here eta is the Dedekind function. See A187076 for the expansion in powers of q^6 (after deleting a factor q^(1/6)). Note that also for the possibly bad prime 2 and the bad prime 3 this expansion gives the correct numbers 0 (the discriminant of this elliptic curve is -3^3).
See also the comment on the Martin-Ono reference in A272202 which implies that 12^{12} 6^(-4) 24^{-4} provides the modularity sequence for this elliptic curve.
If prime(n) == 1 (mod 3) = A002476(m) (for a unique m = m(n)) then prime(n) = A(m)^2 + 3*B(m)^2 with A(m) = A001479(m+1) and B(m) = A001480(m+1), m >= 1. In this case (4*prime(n) - a(n)^2)/12, seems to be a square, q(m)^2. In fact is seems that (the positive) q(m) = B(m). If this conjecture is true then a(n) = 2*(+-sqrt(prime(n) - 3*B(m)^2)) = +- 2*A(m) for prime(n) = A002476(m). This leads to a bisection of the primes 1 (mod 3) into two types: type I if the + sign applies, and type II for the - sign. Primes of type I are given in A272204: 7,13,31,61,67, ... and those of type II in A272205: 19,37,43,73,103, ...

Examples

			a(1) = 2 - A272202(1) = 0, and 2 == 2 (mod 3).
a(4) = 7 - A272202(4) = 7 - 3 = +4, and 7 = A002476(1) = 2^2 + 3*1^2, 2 = A001479(1+1), 7 = A272204(1), hence a(4) = +2*2 = +4.
a(8) = 19 - A272202(8) = 19 - 27 = -8, and 19 = A002476(3) = 4^2 + 3*1^2; 4=A001479(3+1), 19 = A272205(1), hence a(8) = 2*(-4) = -8.
		

References

  • J. H. Silverman, A Friendly Introduction to Number Theory, 3rd ed., Pearson Education, Inc, 2006, Exercise 45.5, p. 405, Exercise 47.2, p. 415, and pp. 400 - 402 (4th ed., Pearson 2014, Exercise 5, p. 371, Exercise 2, p. 385, and pp. 366 - 368).

Crossrefs

Formula

a(n) = prime(n) - N(prime(n)), n = 1, where N(prime(n)) = A272202(n), the number of solutions of the congruence y^2 == x^3 - 1 (mod prime(n)).
a(n) = 0 for prime(n) == 0, 2 (mod 3) (see A045309).
The above given conjecture for primes 1 (mod 3) is expected to be true by analogy to the case A272198 where only the signs differ.
a(n) = +2*A001479(m+1) if prime(n) == A002476(m) (m is unique) is a prime of A272204 (type I).
a(n) = -2*A001479(m+1) if prime(n) == A002476(m) is from A272205 (type II).
See a comment above for this bisection of the primes 1 (mod 3) into type I and II.

A319933 A(n, k) = [x^k] DedekindEta(x)^n, square array read by descending antidiagonals, A(n, k) for n >= 0 and k >= 0.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, -1, -2, 1, 0, 0, -1, -3, 1, 0, 0, 2, 0, -4, 1, 0, 1, 1, 5, 2, -5, 1, 0, 0, 2, 0, 8, 5, -6, 1, 0, 1, -2, 0, -5, 10, 9, -7, 1, 0, 0, 0, -7, -4, -15, 10, 14, -8, 1, 0, 0, -2, 0, -10, -6, -30, 7, 20, -9, 1, 0, 0, -2, 0, 8, -5, 0, -49, 0, 27, -10, 1
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Comments

The columns are generated by polynomials whose coefficients constitute the triangle of signed D'Arcais numbers A078521 when multiplied with n!.

Examples

			[ 0] 1,   0,   0,    0,     0,    0,     0,     0,     0,     0, ... A000007
[ 1] 1,  -1,  -1,    0,     0,    1,     0,     1,     0,     0, ... A010815
[ 2] 1,  -2,  -1,    2,     1,    2,    -2,     0,    -2,    -2, ... A002107
[ 3] 1,  -3,   0,    5,     0,    0,    -7,     0,     0,     0, ... A010816
[ 4] 1,  -4,   2,    8,    -5,   -4,   -10,     8,     9,     0, ... A000727
[ 5] 1,  -5,   5,   10,   -15,   -6,    -5,    25,    15,   -20, ... A000728
[ 6] 1,  -6,   9,   10,   -30,    0,    11,    42,     0,   -70, ... A000729
[ 7] 1,  -7,  14,    7,   -49,   21,    35,    41,   -49,  -133, ... A000730
[ 8] 1,  -8,  20,    0,   -70,   64,    56,     0,  -125,  -160, ... A000731
[ 9] 1,  -9,  27,  -12,   -90,  135,    54,   -99,  -189,   -85, ... A010817
[10] 1, -10,  35,  -30,  -105,  238,     0,  -260,  -165,   140, ... A010818
    A001489,  v , A167541, v , A319931,  v ,         diagonal: A008705
           A080956       A319930      A319932
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. Fifth ed., Clarendon Press, Oxford, 2003.

Crossrefs

Transpose of A286354.
Cf. A078521, A319574 (JacobiTheta3).

Programs

  • Julia
    # DedekindEta is defined in A000594
    for n in 0:10
        DedekindEta(10, n) |> println
    end
  • Maple
    DedekindEta := (x, n) -> mul(1-x^j, j=1..n):
    A319933row := proc(n, len) series(DedekindEta(x, len)^n, x, len+1):
    seq(coeff(%, x, j), j=0..len-1) end:
    seq(print([n], A319933row(n, 10)), n=0..10);
  • Mathematica
    eta[x_, n_] := Product[1 - x^j, {j, 1, n}];
    A[n_, k_] := SeriesCoefficient[eta[x, k]^n, {x, 0, k}];
    Table[A[n - k, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 10 2018 *)
  • Sage
    from sage.modular.etaproducts import qexp_eta
    def A319933row(n, len):
        return (qexp_eta(ZZ['q'], len+4)^n).list()[:len]
    for n in (0..10):
        print(A319933row(n, 10))
    
Previous Showing 11-20 of 26 results. Next