cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 30 results.

A006198 Number of partitions into pairs.

Original entry on oeis.org

1, 1, 6, 41, 365, 3984, 51499, 769159, 13031514, 246925295, 5173842311, 118776068256, 2964697094281, 79937923931761, 2315462770608870, 71705109685449689, 2364107330976587909, 82676528225908987824, 3056806370495613000259, 119137361202296994159415
Offset: 1

Views

Author

Keywords

Comments

a(n) is the subset of the set of unordered pairings of the first 2n integers (A001147) forbidding pairs of the form (i,i+1) for all i in [2,n-1]. There are many other selections of forbidden pairs giving the same count. - Olivier Gérard, Feb 08 2011

Examples

			G.f. = x + x^2 + 6*x^3 + 41*x^4 + 365*x^5 + 3984*x^6 + 51499*x^7 + ...
		

References

  • G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    a[ n_] := With[ {m = Abs[n] - 1}, If[ m < 0, 0, Sign[n] Hypergeometric1F1[-m, -2 m - 1, -2] (2 m + 1)!!]]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = Abs[n] - 1}, If[ m < 0, 0, Sign[n] Sum[ (-1)^k (2 m + 1 - k)! / (2^(m - k) k! (m - k)!), {k, 0, m}]]]; (* Michael Somos, Jan 27 2014 *)
    a[ n_] := With[ {m = Abs[n] - 1}, If[ m < 0, 0, Sign[n] Numerator @ FromContinuedFraction[ Table[(-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m + 1}]]]]; (* Michael Somos, Jan 27 2014 *)
    Rest[CoefficientList[Series[E^(-1 + Sqrt[1 - 2*x])*(-1 + 1/Sqrt[1 - 2*x]), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Nov 29 2015 *)
    Table[(2 n - 1)!! Hypergeometric1F1[1 - n, 1 - 2 n, -2], {n, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
  • PARI
    {a(n) = sign(n) * if( n==0, 0, contfracpnqn( vector( 2*abs(n) -1, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1]) }; /* Michael Somos, Jan 27 2014 */
    
  • PARI
    {a(n) = sign(n) * sum( k=0, n=abs(n)-1, (-1)^k * (2*n + 1 - k)! / (2^(n - k) * k! * (n - k)!) ) }; /* Michael Somos, Jan 27 2014 */
    
  • PARI
    x = 'x+O('x^33); Vec(serlaplace(((2 - 2*x - (1 - 2*x)^(1/2)) / (1-2*x)^(3/2)) * exp((1-2*x)^(1/2) - 1))) \\ Gheorghe Coserea, Aug 05 2015

Formula

a(n) = |A000806(n-1)|+|A000806(n)|. G.f.: Sum_{n>=0} A001147(n)*(x/(1+x)^2)^n. - Vladeta Jovovic, Jun 27 2007
Recurrence: (4*n^2-8*n+1)*a(n-1) + (2*n-1)*a(n-2) + (3-2*n)*a(n) = 0. - Vaclav Kotesovec, Oct 05 2012
G.f.: T(0) - 1, where T(k) = 1 - (k+1)*x/( (k+1)*x - (1+x)^2/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 03 2013
a(-n) = -a(n) for all n in Z. - Michael Somos, Jan 27 2014
a(n+1) = Sum_{k=0..n} (-1)^k * (2n+1-k)! / (2^(n-k) * k! * (n-k)!) if n>=0. - Michael Somos, Jan 27 2014
0 = a(n) * (a(n+2) + a(n+3)) + a(n+1) * (-a(n+1) -3*a(n+2) -4*a(n+3) + a(n+4)) + a(n+2) * (-3*a(n+3) + a(n+4)) + a(n+3) * (-a(n+3)) for all n in Z. - Michael Somos, Jan 27 2014
E.g.f. (for offset 0): ((2 - 2*x - (1 - 2*x)^(1/2)) / (1-2*x)^(3/2)) * exp((1-2*x)^(1/2) - 1) (formula due to B. Salvy, see Plouffe link). - Gheorghe Coserea, Aug 05 2015
E.g.f. (for offset 1): exp(sqrt(1-2*x)-1) * (1/sqrt(1-2*x)-1). - Vaclav Kotesovec, Nov 29 2015
a(n) ~ 2^(n+1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Nov 29 2015

A101683 Write exp(sqrt(1+x)-1) = Sum c(n) x^n/n!; then a(n) = numerator of c(n).

Original entry on oeis.org

1, 1, 0, 1, -5, 9, -329, 3655, -11961, 721315, -12310199, 29326887, -4939227215, 113836841041, -356357531655, 77087063678521, -2238375706930349, 17366683494629835, -2294640596998068569, 80381887628910919255
Offset: 0

Views

Author

Ralf Stephan, Dec 13 2004

Keywords

Comments

Odd part of A000806.

Examples

			exp(sqrt(1+x)-1) = 1+(1/2)*x+(1/48)*x^3-(5/384)*x^4+(3/320)*x^5-(329/46080)*x^6+(731/129024)*x^7-(1329/286720)*x^8+... - From _N. J. A. Sloane_, Aug 29 2012
		

Crossrefs

Denominators are 2^A101684(n).

Programs

  • Maple
    c[0]:= 1: c[1]:= 1/2:
    for n from 2 to 100 do c[n]:= (c[n-2]-(4*n-6)*c[n-1])/4 od:
    seq(numer(c[n]),n=0..100); # Robert Israel, Nov 30 2023
  • Mathematica
    With[{nn=20},Numerator[CoefficientList[Series[Exp[Sqrt[1+x]-1],{x,0,nn}],x]Range[0,nn]!]] (* Harvey P. Dale, Aug 29 2012 *)
  • PARI
    my(x='x+O('x^30)); apply(numerator, Vec(serlaplace(exp(sqrt(1+x)-1)))) \\ Michel Marcus, Nov 30 2023

Formula

Numerator of c(n) satisfying c(n) = (c(n-2) - (4*n-6)*c(n-1))/4, c(0) = 1, c(1) = 1/2. - Robert Israel, Nov 30 2023

Extensions

Definition clarified by N. J. A. Sloane, Aug 29 2012

A104548 Triangle read by rows giving coefficients of Bessel polynomial p_n(x).

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0

Views

Author

Eric W. Weisstein, Mar 14 2005

Keywords

Examples

			Bessel polynomials begin with:
      x;
      x +     x^2;
    3*x +   3*x^2 +    x^3;
   15*x +  15*x^2 +  6*x^3 +    x^4;
  105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
  ...
Triangle of coefficients begins as:
  0;
  1,  0;
  1,  1    0;
  1,  3,   3     0;
  1,  6,  15,   15      0;
  1, 10,  45,  105,   105      0;
  1, 15, 105,  420,   945,   945       0;
  1, 21, 210, 1260,  4725, 10395,  10395       0;
  1, 28, 378, 3150, 17325, 62370, 135135, 135135    0;
		

Crossrefs

Essentially the same as A001498 (the main entry).

Programs

  • Magma
    A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
    [A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
    
  • Mathematica
    T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
  • SageMath
    def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
    flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023

Formula

From G. C. Greubel, Jan 02 2023: (Start)
T(n, k) = binomial(n-1,k)*(n+k-1)!/(2^k*(n-1)!), with T(n, n) = 0.
Sum_{k=0..n} T(n, k) = A001515(n-1).
Sum_{k=0..n} (-1)^k*T(n, k) = A000806(n-1).
Sum_{k=0..floor(n/2)} T(n-k, k) = A000085(n-1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A001464(n-1). (End)

Extensions

T(0, 0) = 0 prepended by G. C. Greubel, Jan 02 2023

A271215 Number of loop-free assembly graphs with n rigid vertices.

Original entry on oeis.org

1, 0, 1, 4, 24, 184, 1911, 24252, 362199, 6162080, 117342912, 2469791336, 56919388745, 1425435420600, 38543562608825, 1119188034056244, 34733368101580440, 1147320305439301344, 40190943859500501151, 1488212241729974297796, 58080468361734193793551
Offset: 0

Views

Author

Jonathan Burns, Apr 13 2016

Keywords

Comments

Number of chord diagrams (equivalent up to reflection) that do not contain any simple chords, e.g., 121332 contains the simple chord 33.

Examples

			For n=0 the a(0)=1 solution is { ∅ }.
For n=1, a(1)=0 since the only assembly graph with one rigid vertex is the loop 11.
For n=2, the a(2)=1 solution is { 1212 }.
For n=3, the a(3)=4 solutions are { 121323, 123123, 123231, 123132 }.
		

References

  • J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.

Crossrefs

Programs

  • Mathematica
    (Table[Sum[Binomial[n,i]*(2*n-i)!/2^(n-i)*(-1)^(i)/n!,{i,0,n}],{n,0,20}]+RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,0,20}])/2
  • PARI
    f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
    lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); vector(nn-1, n, (va[n] + abs(f(n-1)))/2);} \\ Michel Marcus, Jul 28 2020

Formula

a(n) ~ (2n/e)^n / (e * sqrt(2)).
a(n) = (|A000806(n)| + A271218(n)) / 2.
a(n)/A132101(n) ~ 1/e.

A380307 Expansion of e.g.f. exp( (1+5*x)^(1/5) - 1 ).

Original entry on oeis.org

1, 1, -3, 25, -335, 6177, -144947, 4128937, -138327615, 5327738497, -231899041475, 11255588133945, -602683483719503, 35288931375293857, -2242963870471014963, 153791777744471484745, -11314787069889491407103, 889087243145447511507969, -74312052321224600661026051
Offset: 0

Views

Author

Seiichi Manyama, Jan 20 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((1+5*x)^(1/5)-1)))

Formula

a(n) = Sum_{k=0..n} 5^(n-k) * Stirling1(n,k) * Bell(k).
a(n) = (1/e) * 5^n * n! * Sum_{k>=0} binomial(k/5,n)/k!.
a(0) = 1; a(n) = Sum_{k=1..n} (Product_{j=0..k-1} (-5*j+1)) * binomial(n-1,k-1) * a(n-k).

A006147 Reversion of Ramanujan numbers.

Original entry on oeis.org

1, 24, 900, 40352, 1994322, 104816880, 5747466920, 325077729600, 18826860841119, 1110900168420264, 66547088543789532, 4036419643768799328, 247405021070280491110, 15299980644645295780560, 953473460271200881693560, 59817824263728235912396224
Offset: 1

Views

Author

Keywords

Examples

			x + 24*x^2 + 900*x^3 + 40352*x^4 + 1994322*x^5 + 104816880*x^6 + ...
		

Crossrefs

Cf. A000594.

Programs

  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[q * QPochhammer[q, q]^24, {q, 0, 16}]], q]] (* Amiram Eldar, Jan 06 2025 *)

Formula

REVERT(A000594).

Extensions

Signs corrected Dec 24 2001

A373175 Expansion of e.g.f. exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^2.

Original entry on oeis.org

1, 3, 8, 25, 87, 386, 1663, 11313, 39560, 717067, -2408199, 128675438, -2009225567, 53624676795, -1282589050168, 35660396328721, -1032462831852297, 32302377782200418, -1070227545188815745, 37651172275242136857, -1398665563931458389304, 54757245858874447661683
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n!SeriesCoefficient[Exp[Sqrt[2x+1]-1]/(2-Sqrt[2x+1])^2,{x,0,n}]; Array[a,22,0]
  • PARI
    my(x = 'x+O('x^30)); Vec(serlaplace(exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^2)) \\ Michel Marcus, May 27 2024

A373176 Expansion of e.g.f. 2*exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^3.

Original entry on oeis.org

2, 8, 30, 122, 548, 2802, 15638, 100760, 661242, 5519558, 36021212, 495019758, 944742290, 96695115272, -1151063332242, 46492769525882, -1177828529162332, 39211350154011570, -1272035779868081338, 45289997660347946648, -1679496857400789295638, 65976928289858329056518
Offset: 0

Views

Author

Stefano Spezia, May 26 2024

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=n!SeriesCoefficient[2Exp[Sqrt[2x+1]-1]/(2-Sqrt[2x+1])^3,{x,0,n}]; Array[a,22,0]

A272261 Number of one-to-one functions f from [n] to [2n] where f(x) may not be equal to x or to 2n+1-x.

Original entry on oeis.org

1, 0, 4, 40, 576, 10528, 233920, 6124032, 184656640, 6302821888, 240245858304, 10115537336320, 466275700903936, 23354247194542080, 1262994451308888064, 73347095164693676032, 4552571878016243466240, 300763132329730843475968, 21071629550593224017182720
Offset: 0

Views

Author

Marko Riedel, Apr 23 2016

Keywords

Crossrefs

Cf. A000806.

Programs

  • Maple
    a := n -> add(binomial(n,q)*(-1)^q*2^q*binomial(2*n-q,n-q)*(n-q)!, q=0..n): seq(a(n), n=0..20);
    seq(simplify(KummerU(-n, -2*n, -2)), n = 0..18); # Peter Luschny, May 10 2022
  • Mathematica
    Table[CoefficientList[Series[E^(-1 + Sqrt[1 - 4 x])/Sqrt[1 - 4 x], {x, 0, 20}],x][[n]] (n - 1)!, {n, 1, 20}] (* Benedict W. J. Irwin, Jul 14 2016 *)

Formula

a(n) = Sum_{q=0..n} C(n,q) (-1)^q 2^q C(2n-q,n-q) (n-q)!.
a(n) = abs(A000806(n)) * 2^n.
E.g.f.: exp(-1+sqrt(1-4*x))/sqrt(1-4*x). - Benedict W. J. Irwin, Jul 14 2016
a(n) ~ 2^(2*n+1/2) * n^n / exp(n+1). - Vaclav Kotesovec, Jul 16 2016
Conjecture: Alternating sign g.f. is Sum_{k>=0} HermiteH[k,sqrt(x)]x^(k/2). - Benedict W. J. Irwin, Nov 30 2016
Conjecture D-finite with recurrence: a(n) + 2*(-2*n+1)*a(n-1) - 4*a(n-2)=0. - R. J. Mathar, Jan 27 2020
a(n) = KummerU(-n, -2*n, -2). - Peter Luschny, May 10 2022

A336653 First differences of A271215.

Original entry on oeis.org

-1, 1, 3, 20, 160, 1727, 22341, 337947, 5799881, 111180832, 2352448424, 54449597409, 1368516031855, 37118127188225, 1080644471447419, 33614180067524196, 1112586937337720904, 39043623554061199807, 1448021297870473796645, 56592256120004219495755, 2324706946641972649074513
Offset: 1

Views

Author

Michel Marcus, Jul 28 2020

Keywords

Comments

a(n) is the number of epsilon-paths of the n-cube for n>=2.

Crossrefs

Programs

  • PARI
    f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
    lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); my(w=vector(nn-1, n, (va[n] + abs(f(n-1)))/2)); vector(#w-1, k, w[k+1] - w[k]);} \\ Michel Marcus, Jul 28 2020

Formula

a(n) = A271215(n) - A271215(n-1).
Previous Showing 21-30 of 30 results.