A006198
Number of partitions into pairs.
Original entry on oeis.org
1, 1, 6, 41, 365, 3984, 51499, 769159, 13031514, 246925295, 5173842311, 118776068256, 2964697094281, 79937923931761, 2315462770608870, 71705109685449689, 2364107330976587909, 82676528225908987824, 3056806370495613000259, 119137361202296994159415
Offset: 1
G.f. = x + x^2 + 6*x^3 + 41*x^4 + 365*x^5 + 3984*x^6 + 51499*x^7 + ...
- G. Kreweras and Y. Poupard, Sur les partitions en paires d'un ensemble fini totalement ordonné, Publications de l'Institut de Statistique de l'Université de Paris, 23 (1978), 57-74.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
a[ n_] := With[ {m = Abs[n] - 1}, If[ m < 0, 0, Sign[n] Hypergeometric1F1[-m, -2 m - 1, -2] (2 m + 1)!!]]; (* Michael Somos, Jan 27 2014 *)
a[ n_] := With[ {m = Abs[n] - 1}, If[ m < 0, 0, Sign[n] Sum[ (-1)^k (2 m + 1 - k)! / (2^(m - k) k! (m - k)!), {k, 0, m}]]]; (* Michael Somos, Jan 27 2014 *)
a[ n_] := With[ {m = Abs[n] - 1}, If[ m < 0, 0, Sign[n] Numerator @ FromContinuedFraction[ Table[(-1)^Quotient[k, 2] If[ OddQ[k], k, 1], {k, 2 m + 1}]]]]; (* Michael Somos, Jan 27 2014 *)
Rest[CoefficientList[Series[E^(-1 + Sqrt[1 - 2*x])*(-1 + 1/Sqrt[1 - 2*x]), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Nov 29 2015 *)
Table[(2 n - 1)!! Hypergeometric1F1[1 - n, 1 - 2 n, -2], {n, 20}] (* Eric W. Weisstein, Nov 14 2018 *)
-
{a(n) = sign(n) * if( n==0, 0, contfracpnqn( vector( 2*abs(n) -1, k, (-1)^(k\2) * if( k%2, k, 1))) [1,1]) }; /* Michael Somos, Jan 27 2014 */
-
{a(n) = sign(n) * sum( k=0, n=abs(n)-1, (-1)^k * (2*n + 1 - k)! / (2^(n - k) * k! * (n - k)!) ) }; /* Michael Somos, Jan 27 2014 */
-
x = 'x+O('x^33); Vec(serlaplace(((2 - 2*x - (1 - 2*x)^(1/2)) / (1-2*x)^(3/2)) * exp((1-2*x)^(1/2) - 1))) \\ Gheorghe Coserea, Aug 05 2015
A101683
Write exp(sqrt(1+x)-1) = Sum c(n) x^n/n!; then a(n) = numerator of c(n).
Original entry on oeis.org
1, 1, 0, 1, -5, 9, -329, 3655, -11961, 721315, -12310199, 29326887, -4939227215, 113836841041, -356357531655, 77087063678521, -2238375706930349, 17366683494629835, -2294640596998068569, 80381887628910919255
Offset: 0
exp(sqrt(1+x)-1) = 1+(1/2)*x+(1/48)*x^3-(5/384)*x^4+(3/320)*x^5-(329/46080)*x^6+(731/129024)*x^7-(1329/286720)*x^8+... - From _N. J. A. Sloane_, Aug 29 2012
-
c[0]:= 1: c[1]:= 1/2:
for n from 2 to 100 do c[n]:= (c[n-2]-(4*n-6)*c[n-1])/4 od:
seq(numer(c[n]),n=0..100); # Robert Israel, Nov 30 2023
-
With[{nn=20},Numerator[CoefficientList[Series[Exp[Sqrt[1+x]-1],{x,0,nn}],x]Range[0,nn]!]] (* Harvey P. Dale, Aug 29 2012 *)
-
my(x='x+O('x^30)); apply(numerator, Vec(serlaplace(exp(sqrt(1+x)-1)))) \\ Michel Marcus, Nov 30 2023
A104548
Triangle read by rows giving coefficients of Bessel polynomial p_n(x).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0
Bessel polynomials begin with:
x;
x + x^2;
3*x + 3*x^2 + x^3;
15*x + 15*x^2 + 6*x^3 + x^4;
105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
...
Triangle of coefficients begins as:
0;
1, 0;
1, 1 0;
1, 3, 3 0;
1, 6, 15, 15 0;
1, 10, 45, 105, 105 0;
1, 15, 105, 420, 945, 945 0;
1, 21, 210, 1260, 4725, 10395, 10395 0;
1, 28, 378, 3150, 17325, 62370, 135135, 135135 0;
Essentially the same as
A001498 (the main entry).
-
A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
[A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
-
T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
-
def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023
A271215
Number of loop-free assembly graphs with n rigid vertices.
Original entry on oeis.org
1, 0, 1, 4, 24, 184, 1911, 24252, 362199, 6162080, 117342912, 2469791336, 56919388745, 1425435420600, 38543562608825, 1119188034056244, 34733368101580440, 1147320305439301344, 40190943859500501151, 1488212241729974297796, 58080468361734193793551
Offset: 0
For n=0 the a(0)=1 solution is { ∅ }.
For n=1, a(1)=0 since the only assembly graph with one rigid vertex is the loop 11.
For n=2, the a(2)=1 solution is { 1212 }.
For n=3, the a(3)=4 solutions are { 121323, 123123, 123231, 123132 }.
- J. Burns, Counting a Class of Signed Permutations and Chord Diagrams related to DNA Rearrangement, Preprint.
-
(Table[Sum[Binomial[n,i]*(2*n-i)!/2^(n-i)*(-1)^(i)/n!,{i,0,n}],{n,0,20}]+RecurrenceTable[{a[n]==2a[n-1]+(2n-3)a[n-2]-(2n-5)a[n-3]+2a[n-4]-a[n-5],a[0]==1,a[1]==0,a[2]==1,a[3]==3,a[4]==12},a[n],{n,0,20}])/2
-
f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); vector(nn-1, n, (va[n] + abs(f(n-1)))/2);} \\ Michel Marcus, Jul 28 2020
A380307
Expansion of e.g.f. exp( (1+5*x)^(1/5) - 1 ).
Original entry on oeis.org
1, 1, -3, 25, -335, 6177, -144947, 4128937, -138327615, 5327738497, -231899041475, 11255588133945, -602683483719503, 35288931375293857, -2242963870471014963, 153791777744471484745, -11314787069889491407103, 889087243145447511507969, -74312052321224600661026051
Offset: 0
A006147
Reversion of Ramanujan numbers.
Original entry on oeis.org
1, 24, 900, 40352, 1994322, 104816880, 5747466920, 325077729600, 18826860841119, 1110900168420264, 66547088543789532, 4036419643768799328, 247405021070280491110, 15299980644645295780560, 953473460271200881693560, 59817824263728235912396224
Offset: 1
x + 24*x^2 + 900*x^3 + 40352*x^4 + 1994322*x^5 + 104816880*x^6 + ...
-
Rest[CoefficientList[InverseSeries[Series[q * QPochhammer[q, q]^24, {q, 0, 16}]], q]] (* Amiram Eldar, Jan 06 2025 *)
Signs corrected Dec 24 2001
A373175
Expansion of e.g.f. exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^2.
Original entry on oeis.org
1, 3, 8, 25, 87, 386, 1663, 11313, 39560, 717067, -2408199, 128675438, -2009225567, 53624676795, -1282589050168, 35660396328721, -1032462831852297, 32302377782200418, -1070227545188815745, 37651172275242136857, -1398665563931458389304, 54757245858874447661683
Offset: 0
-
a[n_]:=n!SeriesCoefficient[Exp[Sqrt[2x+1]-1]/(2-Sqrt[2x+1])^2,{x,0,n}]; Array[a,22,0]
-
my(x = 'x+O('x^30)); Vec(serlaplace(exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^2)) \\ Michel Marcus, May 27 2024
A373176
Expansion of e.g.f. 2*exp(sqrt(2*x+1)-1)/(2-sqrt(2*x+1))^3.
Original entry on oeis.org
2, 8, 30, 122, 548, 2802, 15638, 100760, 661242, 5519558, 36021212, 495019758, 944742290, 96695115272, -1151063332242, 46492769525882, -1177828529162332, 39211350154011570, -1272035779868081338, 45289997660347946648, -1679496857400789295638, 65976928289858329056518
Offset: 0
-
a[n_]:=n!SeriesCoefficient[2Exp[Sqrt[2x+1]-1]/(2-Sqrt[2x+1])^3,{x,0,n}]; Array[a,22,0]
A272261
Number of one-to-one functions f from [n] to [2n] where f(x) may not be equal to x or to 2n+1-x.
Original entry on oeis.org
1, 0, 4, 40, 576, 10528, 233920, 6124032, 184656640, 6302821888, 240245858304, 10115537336320, 466275700903936, 23354247194542080, 1262994451308888064, 73347095164693676032, 4552571878016243466240, 300763132329730843475968, 21071629550593224017182720
Offset: 0
-
a := n -> add(binomial(n,q)*(-1)^q*2^q*binomial(2*n-q,n-q)*(n-q)!, q=0..n): seq(a(n), n=0..20);
seq(simplify(KummerU(-n, -2*n, -2)), n = 0..18); # Peter Luschny, May 10 2022
-
Table[CoefficientList[Series[E^(-1 + Sqrt[1 - 4 x])/Sqrt[1 - 4 x], {x, 0, 20}],x][[n]] (n - 1)!, {n, 1, 20}] (* Benedict W. J. Irwin, Jul 14 2016 *)
Original entry on oeis.org
-1, 1, 3, 20, 160, 1727, 22341, 337947, 5799881, 111180832, 2352448424, 54449597409, 1368516031855, 37118127188225, 1080644471447419, 33614180067524196, 1112586937337720904, 39043623554061199807, 1448021297870473796645, 56592256120004219495755, 2324706946641972649074513
Offset: 1
-
f(n) = sum(k=0, n, (2*n-k)! / (k! * (n-k)!) * (-1/2)^(n-k) ); \\ A000806
lista(nn) = {my(va = vector(nn)); va[1] = 1; va[2] = 0; va[3] = 1; va[4] = 3; va[5] = 12; for (n=5, nn-1, va[n+1] = 2*va[n] + (2*n-3)*va[n-1] - (2*n-5)*va[n-2] + 2*va[n-3] - va[n-4];); my(w=vector(nn-1, n, (va[n] + abs(f(n-1)))/2)); vector(#w-1, k, w[k+1] - w[k]);} \\ Michel Marcus, Jul 28 2020
Comments