A047997
Triangle of numbers a(n,k) = number of balance positions when k equal weights are placed at a k-subset of the points {-n, -(n-1), ..., n-1, n} on a centrally pivoted rod.
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 1, 4, 8, 12, 1, 5, 13, 24, 32, 1, 6, 18, 43, 73, 94, 1, 7, 25, 69, 141, 227, 289, 1, 8, 32, 104, 252, 480, 734, 910, 1, 9, 41, 150, 414, 920, 1656, 2430, 2934, 1, 10, 50, 207, 649, 1636, 3370, 5744, 8150, 9686, 1, 11, 61, 277, 967
Offset: 1
From _Gus Wiseman_, Apr 18 2023: (Start)
Triangle begins:
1
1 2
1 3 5
1 4 8 12
1 5 13 24 32
1 6 18 43 73 94
1 7 25 69 141 227 289
1 8 32 104 252 480 734 910
1 9 41 150 414 920 1656 2430 2934
Row n = 4 counts the following balanced subsets:
{0} {-1,1} {-1,0,1} {-3,0,1,2}
{-2,2} {-2,0,2} {-4,0,1,3}
{-3,3} {-3,0,3} {-2,-1,0,3}
{-4,4} {-3,1,2} {-2,-1,1,2}
{-4,0,4} {-3,-1,0,4}
{-4,1,3} {-3,-1,1,3}
{-2,-1,3} {-3,-2,1,4}
{-3,-1,4} {-3,-2,2,3}
{-4,-1,1,4}
{-4,-1,2,3}
{-4,-2,2,4}
{-4,-3,3,4}
(End)
Last column is a(n,n) =
A002838(n).
A327475 counts subsets with integer mean.
-
a[n_, k_] := Length[ IntegerPartitions[ n*(2k - n + 1)/2, n, Range[2k - n + 1]]]; Flatten[ Table[ a[n, k], {k, 1, 11}, {n, 1, k}]] (* Jean-François Alcover, Jan 02 2012 *)
Table[Length[Select[Subsets[Range[-n,n]],Length[#]==k&&Total[#]==0&]],{n,8},{k,n}] (* Gus Wiseman, Apr 16 2023 *)
A086394
(-1) times minimal coefficient of the polynomial (1-x)*(1-x^2)*...*(1-x^n).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 7, 7, 8, 10, 11, 12, 16, 19, 21, 23, 29, 34, 41, 46, 56, 68, 80, 92, 114, 135, 158, 182, 225, 269, 320, 369, 455, 544, 644, 753, 921, 1111, 1321, 1543, 1891, 2274, 2711, 3183, 3895, 4694, 5591, 6592, 8051, 9729, 11624
Offset: 1
Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 08 2003
- Alois P. Heinz, Table of n, a(n) for n = 1..1000
- S. R. Finch, Signum equations and extremal coefficients.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- J. W. Meijer and M. Nepveu, Euler's ship on the Pentagonal Sea, Acta Nova, Volume 4, No.1, December 2008. pp. 176-187. [From _Johannes W. Meijer_, Jun 21 2010]
-
p:= proc(n) option remember; expand(
`if`(n=0, 1, (x^n-1)*p(n-1)))
end:
a:= n-> -min(coeffs(p(n))):
seq(a(n), n=1..80); # Alois P. Heinz, Apr 12 2017
-
p[n_] := p[n] = Expand[If[n == 0, 1, (x^n - 1)*p[n - 1]]];
a[n_] := -Min[CoefficientList[p[n], x]];
Table[a[n], {n, 1, 80}]; (* Jean-François Alcover, Dec 28 2021, after Alois P. Heinz *)
-
a(n)=-vecmin(vector(n*(n+1)/2,i,polcoeff(prod(k=1,n,1-x^k),i))) \\ Benoit Cloitre, Sep 12 2003
A133871
a(n) = the definite integral Integral_{0..1} Product_{j=1..n} 4*sin^2(Pi*j*x) dx.
Original entry on oeis.org
2, 4, 6, 10, 12, 20, 24, 34, 44, 64, 78, 116, 148, 208, 286, 410, 556, 808, 1120, 1620, 2308, 3352, 4784, 6980, 10064, 14680, 21296, 31128, 45276, 66288, 96712, 141654, 207156, 303716, 444748, 652612, 956884, 1404920, 2062080, 3029564, 4450120
Offset: 1
a(2) = 4 since Integral_{0..1} sin^2(Pi*x) sin^2(2*Pi*x) dx = 1/4.
- Vaclav Kotesovec, Table of n, a(n) for n = 1..1000 (terms 1..174 from Robert Israel)
- Miklos Bóna, R. Gómez, M. D. Ward, Workshop in Analytic and Probabilistic Combinatorics BIRS-16w5048 2016.
- S. R. Finch, Signum equations and extremal coefficients.
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- Jeffrey Gaither, Guy Louchard, Stephan Wagner, and Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture: Precise Analysis of an Integer Sequence Arising in Dynamics, Combinatorics, Probability and Computing, 24 (2015), 195-215. Special Issue Honouring the Memory of Philippe Flajolet.
- S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, arXiv:0801.2082 [math.DS], 2008-2010.
- S. Jaidee, S. Stevens and T. Ward, Mertens' theorem for toral automorphisms, Proc. Amer. Math. Soc. 139 (2011), no. 5, 1819-1824.
- Yasuhiko Kamiyama, The Euler characteristic of the fiber product of Morse functions, Bull. Korean Math. Soc. (2025) Vol. 62, No. 1, pp. 71-80. See pp. 73, 75.
- Mark Daniel Ward, Resolution of T. Ward's Question and the Israel-Finch Conjecture. Precise Asymptotic Analysis of an Integer Sequence Motivated by the Dynamical Mertens' Theorem for Quasihyperbolic Toral Automorphisms, Slides, 2013.
- T. Ward, D. W. Cantrell and R. Israel, sci.math.research discussion, 2008.
-
a:= n->int(product(4*(sin(Pi*j*x))^2, j=1..n), x=0..1); seq(a(n), n=1..10);
# second Maple program:
A133871:= k -> (-1)^k*coeff(mul((t^j-1)^2,j=1..k),t,k*(k+1)/2);
# Robert Israel, Mar 15 2013
-
p = 1; Table[p = Expand[p*(1 - x^n)^2]; Max[(-1)^n*CoefficientList[p, x]], {n, 1, 100}] (* Vaclav Kotesovec, May 03 2018 *)
(* The constant "d" *) Chop[-E^(-I*(Pi^2*(1 + 6*x^2) - 6*PolyLog[2, E^(2*I*Pi*x)]) / (6*Pi*x)) /. x -> (x /. FindRoot[Pi*(Pi*(-1 + 6*x^2) + 12*I*x*Log[1 - E^(2*I*Pi*x)]) + 6*PolyLog[2, E^(2*I*Pi*x)], {x, 4/5}, WorkingPrecision -> 100])] (* Vaclav Kotesovec, May 04 2018 *)
-
a(n)=sum(k=0, n*(n+1)/2, polcoeff(prod(m=1, n, 1-x^m+x*O(x^k)), k)^2) \\ Paul D. Hanna
A181765
Number of subsets of the interval [-n .. +n] with sums > 0.
Original entry on oeis.org
0, 2, 12, 54, 230, 948, 3860, 15624, 63014, 253588, 1019072, 4091174, 16412668, 65808044, 263755984, 1056789662, 4233176854, 16953418148, 67885557896, 271793651816, 1088059997732, 4355377285932, 17432688395816, 69770793302408, 279227252601884
Offset: 0
a(1) = #{{0,1}, {1}} = 2;
a(2) = #{{-2,0,1,2}, {-2,1,2}, {-1,0,1,2}, {-1,0,2}, {-1,1,2}, {-1,2}, {0,1}, {0,1,2}, {0,2}, {1}, {1,2}, {2}} = 12.
-
import Data.List (subsequences)
a181765 n = length [xs | xs <- subsequences [-n..n], sum xs > 0]
-- Reinhard Zumkeller, Feb 22 2012, Nov 13 2010
A014225
Number of initial pieces needed to reach level n in the Solitaire Army game.
Original entry on oeis.org
- E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 715.
A039826
Largest coefficient in expansion of Product_{i=1..n} (1 + q^i + q^(2i)).
Original entry on oeis.org
1, 2, 3, 7, 15, 36, 87, 217, 549, 1423, 3735, 9911, 26513, 71581, 194681, 532481, 1464029, 4045117, 11225159, 31268577, 87404465, 245101771, 689323849, 1943817227, 5494808425, 15568077235, 44200775239, 125739619467, 358347118257, 1022994133467, 2925044957099, 8376049588815, 24018964753341
Offset: 1
-
nmax = 28; d = {1}; a1 = {};
Do[
n0s = Table[0, {n}];
d = Join[d, n0s, n0s] + Join[n0s, d, n0s] + Join[n0s, n0s, d];
AppendTo[a1, Last[Union[d]]];
, {n, nmax}];
a1 (* Ray Chandler, Mar 26 2014 *)
-
a(n)=vecmax(Vec(prod(k=1,n,1+x^k+x^(2*k))));
vector(50,n,a(n)) \\ Joerg Arndt, Jan 31 2024
A084239
Rank of K-groups of Furstenberg transformation group C*-algebras of n-torus.
Original entry on oeis.org
1, 2, 3, 4, 6, 8, 13, 20, 32, 52, 90, 152, 268, 472, 845, 1520, 2766, 5044, 9277, 17112, 31724, 59008, 110162, 206260, 387282, 729096, 1375654, 2601640, 4929378, 9358944, 17797100, 33904324, 64678112, 123580884, 236413054, 452902072
Offset: 0
Kamran Reihani (reyhan_k(AT)modares.ac.ir), Jun 21 2003
-
A084239 := proc(n)
local tt,c ;
if type(n,'odd') then
product( 1+t^(i-(n+1)/2),i=1..n) ;
else
(1+t^(1/2))*product( 1+t^(i-(n+1)/2),i=1..n) ;
end if;
tt := expand(%) ;
for c in tt do
if c = lcoeff(c) then
return c ;
end if;
end do:
end proc: # R. J. Mathar, Nov 13 2016
-
a[n_] := SeriesCoefficient[If[OddQ[n], 1, 1 + Sqrt[t]]*Product[1 + t^(i - (n + 1)/2), {i, n}], {t, 0, 0}];
Array[a, 36, 0] (* Jean-François Alcover, Nov 24 2017 *)
A350495
a(n) is the constant term in expansion of Product_{k=1..n} (x^(k^2) + 1/x^(k^2))^2.
Original entry on oeis.org
1, 2, 4, 8, 16, 40, 88, 222, 570, 1564, 4516, 13874, 41866, 137432, 442964, 1492610, 4998674, 17204844, 59175316, 207299554, 727137516, 2582078416, 9179001124, 32943918428, 118453240846, 428937325964, 1556421977612, 5676923326262, 20754245720206
Offset: 0
-
b:= proc(n) option remember; `if`(n=0, 1,
expand((x^(n^2)+1/x^(n^2))^2*b(n-1)))
end:
a:= n-> coeff(b(n),x,0):
seq(a(n), n=0..28); # Alois P. Heinz, Jan 28 2022
-
Table[Coefficient[Product[(x^(k^2) + 1/x^(k^2))^2, {k, 1, n}], x, 0], {n, 0, 30}] (* Vaclav Kotesovec, Feb 05 2022 *)
A348639
Number of ways to express n in the form 1 +- 2 +- 3 ... +- n.
Original entry on oeis.org
1, 0, 0, 1, 2, 0, 0, 6, 11, 0, 0, 57, 103, 0, 0, 615, 1131, 0, 0, 7209, 13467, 0, 0, 89261, 168515, 0, 0, 1147893, 2183943, 0, 0, 15181540, 29055149, 0, 0, 205171534, 394497990, 0, 0, 2820847321, 5444272739, 0, 0, 39329485312, 76142226498, 0, 0, 554756557011
Offset: 1
-
int solsN(int n, int k, int sum) { if (n == k) return sum == n; return solsN(n, k+1, sum + k + 1) + solsN(n, k+1, sum - k - 1);}
int getNumber(int n) { return solsN(n, 1, 1); }
-
list(n) = my(poly=vector(n), v=vector(n)); poly[1]=1; for(k=2, n, poly[k]=poly[k-1]*(1+'x^k)); for(k=1, n, if(k%4==2||k%4==3, v[k]=0, v[k]=polcoeff(poly[k], k*(k+3)/4-1))); v \\ Jianing Song, Nov 19 2021
-
from functools import cache
@cache
def b(t, s, u): # target, sum, upto
if u == 1: return int(t == s + 1)
return b(t, s - u, u - 1) + b(t, s + u, u - 1)
def a(n): return b(n, 0, n)
print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Oct 29 2021
A350881
a(n) is the constant term in expansion of Product_{k=1..n} (x^prime(k) + 1/x^prime(k))^2.
Original entry on oeis.org
1, 2, 4, 10, 24, 50, 140, 368, 1152, 3682, 11784, 39902, 134612, 463066, 1635092, 5818384, 20684072, 73693068, 266943648, 967762792, 3533666568, 13036452946, 48102671884, 178315730764, 661567489568, 2450447537226, 9123572154720, 34201574126260
Offset: 0
-
p:= proc(n) option remember; `if`(n=0, 1,
p(n-1)*(x^ithprime(n)+1/x^ithprime(n))^2)
end:
a:= n-> coeff(p(n), x, 0):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 26 2022
-
p[n_] := p[n] = If[n == 0, 1, p[n - 1]*(x^Prime[n] + 1/x^Prime[n])^2];
a[n_] := Coefficient[p[n], x, 0];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 01 2022, after Alois P. Heinz *)
-
a(n) = polcoef (prod(k=1, n, (x^prime(k) + 1/x^prime(k))^2), 0); \\ Michel Marcus, Jan 21 2022
Comments