cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 207 results. Next

A022522 Nexus numbers (n+1)^6 - n^6.

Original entry on oeis.org

1, 63, 665, 3367, 11529, 31031, 70993, 144495, 269297, 468559, 771561, 1214423, 1840825, 2702727, 3861089, 5386591, 7360353, 9874655, 13033657, 16954119, 21766121, 27613783, 34655985, 43067087, 53037649, 64775151, 78504713, 94469815, 112933017, 134176679
Offset: 0

Views

Author

N. J. A. Sloane, Jun 14 1998

Keywords

References

  • J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 54.

Crossrefs

Column k=5 of array A047969.
Beginning with n=1, a subsequence of A181125 (difference of two positive 6th powers). - Mathew Englander, Jun 01 2014

Programs

Formula

G.f.: (1+x)*(1+56*x+246*x^2+56*x^3+x^4)/(1-x)^6. - Colin Barker, Dec 21 2012
a(n) = A005408(n) * A243201(n). - Mathew Englander, Jun 06 2014
a(n) = A001014(n+1) - A001014(n). - Wesley Ivan Hurt, Jun 06 2014
E.g.f.: (1 +62*x +270*x^2 +260*x^3 +75*x^4 +6*x^5)*exp(x). - G. C. Greubel, Aug 28 2019
G.f.: polylog(-6, x)*(1-x)/x. See the g.f. of Colin Barker (with expanded numerator), and the g.f. of the rows of A008292 by Vladeta Jovovic, Sep 02 2002. - Wolfdieter Lang, May 10 2021

Extensions

More terms from Colin Barker, Dec 21 2012

A007412 The noncubes: a(n) = n + floor((n + floor(n^(1/3)))^(1/3)).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71
Offset: 1

Views

Author

Keywords

Comments

Seems to be numbers k for which the order of the torsion subgroup t of the elliptic curve y^2 = x^3 - k is t=1. - Artur Jasinski, Jun 30 2010
A010057(a(n)) = 0. - Reinhard Zumkeller, Oct 22 2011

References

  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 27911
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000578 (complement), A000037 (nonsquares).

Programs

  • Haskell
    a007412 n = n + a048766 (n + a048766 n)  -- Reinhard Zumkeller, Oct 22 2011
    
  • Mathematica
    With[{upto=58},Complement[Range[upto],Range[Ceiling[Power[upto, (3)^-1]]]^3]] (* Harvey P. Dale, Nov 09 2011 *)
    A007412Q = ! IntegerQ[#~Surd~3] &; Select[Range[57], A007412Q] (* JungHwan Min, Mar 27 2017 *)
  • PARI
    lista(nn) = for (n=1, nn, if (! ispower(n, 3), print1(n, ", "))); \\ Michel Marcus, May 24 2015
    
  • PARI
    list(lim)=my(v=List(),s=sqrtnint(lim\=1,3),k3,k13=1); for(k=1,s, k3=k13; k13=(k+1)^3; for(n=k3+1,k13-1, listput(v,n))); for(n=s^3+1,lim, listput(v,n)); Vec(v) \\ Charles R Greathouse IV, Jun 13 2024
    
  • Python
    from sympy import integer_nthroot
    def A007412(n): return n+(k:=integer_nthroot(n,3)[0])+int(n>=(k+1)**3-k) # Chai Wah Wu, Jun 17 2024

Formula

a(n) = n + A048766(n + A048766(n)). - Reinhard Zumkeller, Oct 22 2011
a(n) = n + n^(1/3) + O(1). - Charles R Greathouse IV, Aug 08 2024

A368714 Numbers whose maximal exponent in their prime factorization is even.

Original entry on oeis.org

1, 4, 9, 12, 16, 18, 20, 25, 28, 36, 44, 45, 48, 49, 50, 52, 60, 63, 64, 68, 75, 76, 80, 81, 84, 90, 92, 98, 99, 100, 112, 116, 117, 121, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 169, 171, 172, 175, 176, 180, 188, 192, 196, 198, 204, 207, 208
Offset: 1

Views

Author

Amiram Eldar, Jan 04 2024

Keywords

Comments

First differs from A240112 at n = 30.
Numbers k such that A051903(k) is even.
The asymptotic density of this sequence is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769... .

Crossrefs

Programs

  • Mathematica
    Select[Range[210], # == 1 || EvenQ[Max[FactorInteger[#][[;;, 2]]]] &]
  • PARI
    lista(kmax) = for(k = 1, kmax, if(k == 1 || !(vecmax(factor(k)[,2])%2), print1(k, ", ")));

A179162 a(n) = least positive k such that Mordell's equation y^2 = x^3 + k has exactly n integral solutions.

Original entry on oeis.org

6, 27, 2, 343, 12, 1, 37, 8, 24, 512, 9, 35611289, 73, 10218313, 315, 129554216, 17, 274625, 297, 17576000, 2817, 200201625, 1737
Offset: 0

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Additional known terms: a(24)=4481, a(26)=225, a(28)=2089, a(32)=1025.
For least positive k such that equation y^2 = x^3 - k has exactly n integral solutions, see A179175.
If n is odd, then a(n) is perfect cube. [Ray Chandler]

Crossrefs

Extensions

Edited and a(11), a(13), a(15), a(17), a(19), a(21) added by Ray Chandler, Jul 11 2010

A179163 Numbers k such that Mordell's equation y^2 = x^3 - k has exactly 1 integral solution.

Original entry on oeis.org

1, 8, 27, 64, 125, 512, 729, 1000, 1728, 2197, 2744, 3375, 4096, 4913, 5832, 6859, 8000, 9261, 10648, 15625, 19683, 24389, 27000, 32768, 35937, 39304, 42875, 46656, 50653, 59319, 64000, 68921, 79507, 91125, 97336, 110592, 117649, 125000, 132651
Offset: 1

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

Contains all sixth powers: suppose that y^2 = x^3 - t^6, then (y/t^3)^2 = (x/t^2)^3 - 1. The elliptic curve Y^2 = X^3 - 1 has rank 0 and the only rational points on it are (1,0), so y^2 = x^3 - t^6 has only one solution (t^2,0). - Jianing Song, Aug 24 2022

Crossrefs

Complement of A179149 among the positive cubes.
Cf. also A179145, A356703.

Programs

  • Mathematica
    (* Assuming every term is a cube *) xmax = 2000; r[n_] := Reap[Do[rpos = Reduce[y^2 == x^3 - n, y, Integers]; If[rpos =!= False, Sow[rpos]]; rneg = Reduce[y^2 == (-x)^3 - n, y, Integers]; If[rneg =!= False, Sow[rneg]], {x, 1, xmax}]]; ok[1] = True; ok[n_] := Which[rn = r[n]; rn[[2]] === {}, False, Length[rn[[2]]] > 1, False, ! FreeQ[rn[[2, 1]], Or], False, True, True]; ok[n_ /; !IntegerQ[n^(1/3)]] = False; A179163 = Reap[Do[If[ok[n], Print[n]; Sow[n]], {n, 1, 140000}]][[2, 1]] (* Jean-François Alcover, Apr 12 2012 *)

Formula

a(n) = A356713(n)^3. - Jianing Song, Aug 24 2022

Extensions

Edited and extended by Ray Chandler, Jul 11 2010

A060950 Rank of elliptic curve y^2 = x^3 + n.

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 2, 0, 2, 1, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1, 2, 0, 2, 1, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, May 10 2001

Keywords

Comments

The curves for n and -27*n are isogenous (as Noam Elkies points out--see Womack), so they have the same rank. - Jonathan Sondow, Sep 10 2013

Examples

			a(1) = A060951(27) = a(729) = 0. - _Jonathan Sondow_, Sep 10 2013
		

Crossrefs

Cf. A081119 (number of integral solutions to Mordell's equation y^2 = x^3 + n).

Programs

  • PARI
    a(n) = ellanalyticrank(ellinit([0, 0, 0, 0, n]))[1] \\ Jianing Song, Aug 24 2022
    
  • PARI
    apply( {A060950(n)=ellrank(ellinit([0, n]))[1]}, [1..99]) \\ For PARI version  < 2.14, use ellanalyticrank(...). - M. F. Hasler, Jul 01 2024

Formula

a(n) = A060951(27*n) and A060951(n) = a(27*n), so a(n) = a(729*n). - Jonathan Sondow, Sep 10 2013

Extensions

Corrected by James R. Buddenhagen, Feb 18 2005

A002155 Numbers k for which the rank of the elliptic curve y^2 = x^3 + k is 2.

Original entry on oeis.org

15, 17, 24, 37, 43, 57, 63, 65, 73, 79, 89, 101, 106, 122, 129, 131, 142, 145, 148, 151, 161, 164, 168, 171, 186, 195, 197, 198, 204, 217, 222, 223, 225, 229, 232, 233, 248, 252, 260, 265, 268, 269, 281, 294, 295, 297, 303, 322, 331, 337, 347, 350, 353, 360, 366, 369, 373, 377, 381, 388, 389, 392, 404, 409, 412, 414, 433, 449, 464, 469, 481, 483, 485, 492
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..500] do if Rank(EllipticCurve([0,0,0,0,k])) eq 2 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

More terms from James R. Buddenhagen, Feb 18 2005

A179175 a(n) = least positive k such that Mordell's equation y^2 = x^3 - k has exactly n integral solutions.

Original entry on oeis.org

3, 1, 2, 1331, 4, 216, 28, 54872, 116, 343, 828, 250047, 496, 71991296, 207
Offset: 0

Views

Author

Artur Jasinski, Jun 30 2010

Keywords

Comments

The status of further terms is:
15 integral solutions: unknown
16 integral solutions: 503
17 integral solutions: unknown
18 integral solutions: 431
19 integral solutions: unknown
20 integral solutions: 2351
21 integral solutions: unknown
22 integral solutions: 3807
For least positive k such that equation y^2 = x^3 + k has exactly n integral solutions, see A179162.
If n is odd, then a(n) is perfect cube. [Ray Chandler]
From Jose Aranda, Aug 04 2024: (Start)
About those unknown terms:
a(15) <= 2600^3 = (26* 10^2)^3
a(17) <= 10400^3 = (26* 20^2)^3
a(19) <= 93600^3 = (26* 60^2)^3
a(21) <= 4586400^3 = (26*420^2)^3
The term a(13) = 71991296 = 416^3 = (26*4^2)^3. (End)

Crossrefs

Extensions

Edited and a(7), a(11), a(13) added by Ray Chandler, Jul 11 2010

A256840 Primes of form n^2 + 20736.

Original entry on oeis.org

20857, 21577, 21961, 23761, 27961, 28657, 29017, 29761, 30937, 33961, 34897, 37897, 41761, 42937, 49297, 51361, 60337, 62761, 65257, 80761, 83737, 93097, 107761, 111337, 113761, 122497, 132961, 142537, 151057, 164377, 173617, 181537, 188017, 192961, 218761
Offset: 1

Views

Author

Reinhard Zumkeller, Apr 11 2015

Keywords

Comments

Conjecture: sequence is infinite.

Crossrefs

Cf. A010051, A000290; subsequence of A028916.
Primes of form n^2+b^4, b fixed: A002496 (b=1), A243451 (b=2), A256775 (b=3), A256776 (b=4), A256777 (b=5), A256834 (b=6), A256835 (b=7), A256836 (b=8), A256837 (b=9), A256838 (b=10), A256839 (b=11), A256841 (b=13).

Programs

  • Haskell
    a256840 n = a256840_list !! (n-1)
    a256840_list = [x | x <- map (+ 20736) a000290_list, a010051' x == 1]

A002151 Numbers k for which rank of the elliptic curve y^2 = x^3 + k is 0.

Original entry on oeis.org

1, 4, 6, 7, 13, 14, 16, 20, 21, 23, 25, 27, 29, 32, 34, 42, 45, 49, 51, 53, 59, 60, 64, 70, 75, 78, 81, 84, 85, 86, 87, 88, 90, 93, 95, 96, 104, 109, 114, 115, 116, 123, 124, 125, 135, 137, 140, 144, 153, 157, 158, 159, 160, 162, 165, 167, 173, 175, 176, 178
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    for k in[1..200] do if Rank(EllipticCurve([0,0,0,0,k])) eq 0 then print k; end if; end for; // Vaclav Kotesovec, Jul 07 2019

Extensions

Corrected and extended by James R. Buddenhagen, Feb 18 2005
The missing entry 123 was added by T. D. Noe, Jul 24 2007
Previous Showing 31-40 of 207 results. Next