cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 133 results. Next

A308584 Number of ways to write n as a*(a+1)/2 + b*(b+1)/2 + 5^c*8^d, where a,b,c,d are nonnegative integers with a <= b.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 3, 3, 2, 2, 4, 3, 1, 4, 2, 2, 4, 2, 2, 2, 4, 2, 3, 2, 3, 5, 2, 3, 5, 3, 3, 5, 2, 2, 4, 4, 4, 3, 4, 3, 5, 3, 5, 5, 2, 6, 7, 1, 3, 6, 4, 4, 4, 4, 2, 9, 3, 2, 4, 3, 7, 4, 4, 5, 5, 4, 6, 5, 3, 6, 8, 2, 5, 7, 3, 5, 7, 3, 3, 7, 5, 7, 3, 5, 5, 8, 1, 4, 8, 1, 7, 6, 3, 3, 9, 5, 4, 6, 4, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jun 08 2019

Keywords

Comments

Conjecture: a(n) > 0 for all n > 0. Equivalently, each n = 1,2,3,... can be written as w^2 + x*(x+1) + 5^y*8^z with w,x,y,z nonnegative integers.
We have verified a(n) > 0 for all n = 1..4*10^8.
See also A308566 for a similar conjecture.
a(n) > 0 for all 0 < n < 10^10. - Giovanni Resta, Jun 10 2019

Examples

			a(13) = 1 with 13 = 3*4/2 + 3*4/2 + 5^0*8^0.
a(48) = 1 with 48 = 5*6/2 + 7*8/2 + 5^1*8^0.
a(87) = 1 with 87 = 1*2/2 + 12*13/2 + 5^0*8^1.
a(90) = 1 with 90 = 4*5/2 + 10*11/2 + 5^2*8^0.
a(423) = 1 with 423 = 9*10/2 + 22*23/2 + 5^3*8^0.
a(517) = 1 with 517 = 17*18/2 + 24*25/2 + 5^0*8^2.
a(985) = 1 with 985 = 19*20/2 + 34*35/2 + 5^2*8^1.
a(2694) = 1 with 2694 = 7*8/2 + 68*69/2 + 5^1*8^2.
a(42507) = 1 with 42507 = 178*179/2 + 223*224/2 + 5^2*8^2.
a(544729) = 1 with 544729 = 551*552/2 + 857*858/2 + 5^5*8^1.
a(913870) = 1 with 913870 = 559*560/2 + 700*701/2 + 5^3*8^4.
a(1843782) = 1 with 1843782 = 808*809/2 + 1668*1669/2 + 5^6*8^1.
		

Crossrefs

Programs

  • Mathematica
    TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
    tab={};Do[r=0;Do[If[TQ[n-5^k*8^m-x(x+1)/2],r=r+1],{k,0,Log[5,n]},{m,0,Log[8,n/5^k]},{x,0,(Sqrt[4(n-5^k*8^m)+1]-1)/2}];tab=Append[tab,r],{n,1,100}];Print[tab]

A008569 Digits of powers of 8.

Original entry on oeis.org

1, 8, 6, 4, 5, 1, 2, 4, 0, 9, 6, 3, 2, 7, 6, 8, 2, 6, 2, 1, 4, 4, 2, 0, 9, 7, 1, 5, 2, 1, 6, 7, 7, 7, 2, 1, 6, 1, 3, 4, 2, 1, 7, 7, 2, 8, 1, 0, 7, 3, 7, 4, 1, 8, 2, 4, 8, 5, 8, 9, 9, 3, 4, 5, 9, 2, 6, 8, 7, 1, 9, 4, 7, 6, 7, 3, 6, 5, 4, 9, 7, 5, 5, 8, 1, 3, 8, 8, 8, 4, 3, 9, 8, 0, 4, 6, 5, 1, 1
Offset: 0

Views

Author

Keywords

Comments

The constant whose decimal expansion is this sequence is irrational (Mahler, 1981). - Amiram Eldar, Mar 23 2025

Examples

			Triangle begins:
  1;
  8;
  6, 4;
  5, 1, 2;
  4, 0, 9, 6;
  3, 2, 7, 6, 8;
  2, 6, 2, 1, 4, 4;
  2, 0, 9, 7, 1, 5, 2;
  ...
		

Crossrefs

Programs

  • Mathematica
    IntegerDigits/@(8^Range[0,20])//Flatten (* Harvey P. Dale, Nov 14 2020 *)

A271939 Number of edges in the n-th order Sierpinski carpet graph.

Original entry on oeis.org

8, 88, 776, 6424, 52040, 418264, 3351944, 26833048, 214716872, 1717892440, 13743611912, 109950312472, 879606751304, 7036866765016, 56294972383880, 450359893862296, 3602879495272136, 28823036995298392, 230584299061751048, 1844674401792100120
Offset: 1

Views

Author

Emeric Deutsch, Apr 17 2016

Keywords

Comments

Also the number of maximal and maximum cliques in the n-Sierpinski carpet graph. - Eric W. Weisstein, Dec 01 2017

Examples

			For n=1, the 1st-order Sierpinski carpet graph is an 8-cycle.
		

Crossrefs

Cf. A016140.
Cf. A001018 (number of vertices in the n-Sierpinski carpet graph).

Programs

  • Maple
    seq((1/5)*(8*(8^n-3^n)), n = 1 .. 20);
  • Mathematica
    Table[8 (8^n - 3^n)/5, {n, 20}] (* Eric W. Weisstein, Jun 17 2017 *)
    LinearRecurrence[{11, -24}, {8, 88}, 20] (* Eric W. Weisstein, Jun 17 2017 *)
    CoefficientList[Series[8/(1 - 11 x + 24 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 17 2017 *)
  • PARI
    x='x+O('x^99); Vec(8/((1-3*x)*(1-8*x))) \\ Altug Alkan, Apr 17 2016

Formula

a(n) = 8 * (8^n - 3^n)/5.
a(n) = 8 * A016140(n).
G.f.: 8*x / ( (8*x-1)*(3*x-1) ). - R. J. Mathar, Apr 17 2016
a(n) = 8*a(n-1) + 8*3^(n-1). - Allan Bickle, Nov 27 2022

A223331 T(n,k)=Rolling cube footprints: number of nXk 0..7 arrays starting with 0 where 0..7 label vertices of a cube and every array movement to a horizontal or antidiagonal neighbor moves along a corresponding cube edge.

Original entry on oeis.org

1, 3, 8, 9, 27, 64, 27, 189, 243, 512, 81, 1323, 3969, 2187, 4096, 243, 9261, 64827, 83349, 19683, 32768, 729, 64827, 1059723, 3176523, 1750329, 177147, 262144, 2187, 453789, 17324685, 121264857, 155649627, 36756909, 1594323, 2097152, 6561
Offset: 1

Views

Author

R. H. Hardin Mar 19 2013

Keywords

Comments

Table starts
.........1..........3.............9................27....................81
.........8.........27...........189..............1323..................9261
........64........243..........3969.............64827...............1059723
.......512.......2187.........83349...........3176523.............121264857
......4096......19683.......1750329.........155649627...........13876429707
.....32768.....177147......36756909........7626831723.........1587890407761
....262144....1594323.....771895089......373714754427.......181703507374179
...2097152...14348907...16209796869....18312022966923.....20792470582897209
..16777216..129140163..340405734249...897289125379227...2379298227030964827
.134217728.1162261467.7148520419229.43967167143582123.272264906211251105313
Horizontal or vertical instead of horizontal or antidiagonal gives A222444

Examples

			Some solutions for n=3 k=4
..0..4..5..1....0..4..0..1....0..4..6..4....0..2..0..4....0..4..6..4
..5..4..0..1....5..1..5..1....0..2..0..2....6..2..6..4....6..2..6..7
..6..2..3..1....5..7..3..2....3..2..3..1....6..4..0..4....0..2..6..7
Vertex neighbors:
0 -> 1 2 4
1 -> 0 3 5
2 -> 0 3 6
3 -> 1 2 7
4 -> 0 5 6
5 -> 1 4 7
6 -> 2 4 7
7 -> 3 5 6
		

Crossrefs

Column 1 is A001018(n-1)
Column 2 is A013708(n-1)
Column 3 is 9*21^(n-1)
Column 4 is 27*49^(n-1)
Row 1 is A000244(n-1)
Row 2 is 27*7^(n-2) for n>1

Formula

Empirical for column k:
k=1: a(n) = 8*a(n-1)
k=2: a(n) = 9*a(n-1)
k=3: a(n) = 21*a(n-1)
k=4: a(n) = 49*a(n-1)
k=5: a(n) = 117*a(n-1) -294*a(n-2)
k=6: a(n) = 282*a(n-1) -3969*a(n-2) +9604*a(n-3)
k=7: a(n) = 692*a(n-1) -43569*a(n-2) +847042*a(n-3) -6303164*a(n-4) +15731352*a(n-5)
Empirical for row n:
n=1: a(n) = 3*a(n-1)
n=2: a(n) = 7*a(n-1) for n>2
n=3: a(n) = 18*a(n-1) -27*a(n-2) for n>4
n=4: a(n) = 48*a(n-1) -402*a(n-2) +1064*a(n-3) -789*a(n-4) for n>7
n=5: [order 9] for n>13
n=6: [order 20] for n>25
n=7: [order 51] for n>57

A339688 a(n) = Sum_{d|n} 8^(d-1).

Original entry on oeis.org

1, 9, 65, 521, 4097, 32841, 262145, 2097673, 16777281, 134221833, 1073741825, 8589967945, 68719476737, 549756076041, 4398046515265, 35184374186505, 281474976710657, 2251799830495305, 18014398509481985, 144115188210078217, 1152921504607109185
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 12 2020

Keywords

Crossrefs

Column 8 of A308813.
Sums of the form Sum_{d|n} q^(d-1): A034729 (q=2), A034730 (q=3), A113999 (q=10), A339684 (q=4), A339685 (q=5), A339686 (q=6), A339687 (q=7), this sequence (q=8), A339689 (q=9).

Programs

  • Magma
    A339688:= func< n | (&+[8^(d-1): d in Divisors(n)]) >;
    [A339688(n): n in [1..40]]; // G. C. Greubel, Jun 25 2024
    
  • Mathematica
    Table[Sum[8^(d - 1), {d, Divisors[n]}], {n, 1, 21}]
    nmax = 21; CoefficientList[Series[Sum[x^k/(1 - 8 x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
  • PARI
    a(n) = sumdiv(n, d, 8^(d-1)); \\ Michel Marcus, Dec 13 2020
    
  • SageMath
    def A339688(n): return sum(8^(k-1) for k in (1..n) if (k).divides(n))
    [A339688(n) for n in range(1,41)] # G. C. Greubel, Jun 25 2024

Formula

G.f.: Sum_{k>=1} x^k / (1 - 8*x^k).
G.f.: Sum_{k>=1} 8^(k-1) * x^k / (1 - x^k).
a(n) ~ 8^(n-1). - Vaclav Kotesovec, Jun 05 2021

A365606 Number of degree 2 vertices in the n-Sierpinski carpet graph.

Original entry on oeis.org

8, 20, 84, 500, 3540, 26996, 212052, 1684724, 13442772, 107437172, 859182420, 6872514548, 54977282004, 439809752948, 3518452514388, 28147543587572, 225180119118036, 1801440264196724, 14411520047331156, 115292154179921396, 922337214843187668, 7378697662956950900, 59029581136289955924
Offset: 1

Views

Author

Allan Bickle, Sep 12 2023

Keywords

Comments

The level 0 Sierpinski carpet graph is a single vertex. The level n Sierpinski carpet graph is formed from 8 copies of level n-1 by joining boundary vertices between adjacent copies.

Examples

			The level 1 Sierpinski carpet graph is an 8-cycle, which has 8 degree 2 vertices and 0 degree 3 or 4 vertices.  Thus a(1) = 8.
		

Crossrefs

Cf. A001018 (order), A271939 (size).
Cf. A365606 (degree 2), A365607 (degree 3), A365608 (degree 4).
Cf. A009964, A291066, A359452, A359453, A291066, A083233, A332705 (Menger sponge graph).

Programs

  • Mathematica
    LinearRecurrence[{12,-35,24},{8,20,84},30] (* Paolo Xausa, Oct 16 2023 *)
  • Python
    def A365606(n): return ((1<<3*n-1)+(3**(n-1)<<4))//5+4 # Chai Wah Wu, Nov 27 2023

Formula

a(n) = (1/10)*8^n + (16/15)*3^n + 4.
a(n) = 8*a(n-1) - 16*3^(n-2) - 28.
a(n) = 8^n - A365607(n) - A365608(n).
2*a(n) = 2*A271939(n) - 3*A365607(n) - 4*A365608(n).
G.f.: 4*x*(2 - 19*x + 31*x^2)/((1 - x)*(1 - 3*x)*(1 - 8*x)). - Stefano Spezia, Sep 12 2023

A047854 a(n) = A047848(6, n).

Original entry on oeis.org

1, 2, 11, 92, 821, 7382, 66431, 597872, 5380841, 48427562, 435848051, 3922632452, 35303692061, 317733228542, 2859599056871, 25736391511832, 231627523606481, 2084647712458322, 18761829412124891, 168856464709124012, 1519708182382116101, 13677373641439044902, 123096362772951404111
Offset: 0

Views

Author

Keywords

Comments

n-th difference of a(n), a(n-1), ..., a(0) is A001018(n-1) for n >= 1.
Also, the cogrowth sequence of the 16-element group D4 X C2 = . - Sean A. Irvine, Nov 10 2024

Crossrefs

Programs

  • Magma
    [(9^n +7)/8: n in [0..40]]; // G. C. Greubel, Jan 12 2025
    
  • Maple
    a[0]:=0:a[1]:=1:for n from 2 to 50 do a[n]:=9*a[n-1]+1 od: seq(a[n]+1, n=0..17); # Zerinvary Lajos, Mar 20 2008
  • Mathematica
    a = {1}; ZZ = 1; Do[ZZ = ZZ + 3^(2x); AppendTo[a, ZZ], {x,0,40}]; a (* Zerinvary Lajos, Apr 03 2007 *)
    (9^Range[0,40] +7)/8 (* G. C. Greubel, Jan 12 2025 *)
  • Python
    def A047854(n): return (pow(9,n) +7)//8
    print([A047854(n) for n in range(41)]) # G. C. Greubel, Jan 12 2025

Formula

a(n) = (9^n + 7)/8. - Ralf Stephan, Feb 14 2004
From Philippe Deléham, Oct 06 2009: (Start)
a(0) = 1, a(1) = 2, a(n) = 10*a(n-1) - 9*a(n-2) for n > 1.
G.f.: (1 - 8*x)/(1 - 10*x + 9*x^2). (End)
a(n) = 9*a(n-1) - 7 (with a(0)=1). - Vincenzo Librandi, Aug 06 2010
E.g.f.: exp(x)*(exp(8*x) + 7)/8. - Elmo R. Oliveira, Aug 29 2024

Extensions

a(18)-a(22) from Elmo R. Oliveira, Aug 29 2024

A075503 Stirling2 triangle with scaled diagonals (powers of 8).

Original entry on oeis.org

1, 8, 1, 64, 24, 1, 512, 448, 48, 1, 4096, 7680, 1600, 80, 1, 32768, 126976, 46080, 4160, 120, 1, 262144, 2064384, 1232896, 179200, 8960, 168, 1, 2097152, 33292288, 31653888, 6967296, 537600, 17024, 224, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 02 2002

Keywords

Comments

This is a lower triangular infinite matrix of the Jabotinsky type. See the Knuth reference given in A039692 for exponential convolution arrays.
The row polynomials p(n,x) := Sum_{m=1..n} a(n,m)x^m, n >= 1, have e.g.f. J(x; z)= exp((exp(8*z) - 1)*x/8) - 1.

Examples

			[1]; [8,1]; [64,24,1]; ...; p(3,x) = x(64 + 24*x + x^2).
From _Andrew Howroyd_, Mar 25 2017: (Start)
Triangle starts
*       1
*       8        1
*      64       24        1
*     512      448       48       1
*    4096     7680     1600      80      1
*   32768   126976    46080    4160    120     1
*  262144  2064384  1232896  179200   8960   168   1
* 2097152 33292288 31653888 6967296 537600 17024 224 1
(End)
		

Crossrefs

Columns 1-7 are A001018, A060195, A076003-A076007. Row sums are A075507.

Programs

  • Mathematica
    Flatten[Table[8^(n - m) StirlingS2[n, m], {n, 11}, {m, n}]] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    for(n=1, 11, for(m=1, n, print1(8^(n - m) * stirling(n, m, 2),", ");); print();) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n, m) = (8^(n-m)) * stirling2(n, m).
a(n, m) = (Sum_{p=0..m-1} A075513(m, p)*((p+1)*8)^(n-m))/(m-1)! for n >= m >= 1, else 0.
a(n, m) = 8m*a(n-1, m) + a(n-1, m-1), n >= m >= 1, else 0, with a(n, 0) := 0 and a(1, 1)=1.
G.f. for m-th column: (x^m)/Product_{k=1..m}(1-8k*x), m >= 1.
E.g.f. for m-th column: (((exp(8x)-1)/8)^m)/m!, m >= 1.

A157176 a(n+1) = a(n - n mod 2) + a(n - n mod 3), a(0) = 1.

Original entry on oeis.org

1, 2, 2, 3, 5, 8, 8, 16, 16, 24, 40, 64, 64, 128, 128, 192, 320, 512, 512, 1024, 1024, 1536, 2560, 4096, 4096, 8192, 8192, 12288, 20480, 32768, 32768, 65536, 65536, 98304, 163840, 262144, 262144, 524288, 524288, 786432, 1310720, 2097152, 2097152, 4194304, 4194304
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 24 2009

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,8},{1, 2, 2, 3, 5, 8},45] (* Stefano Spezia, May 29 2024 *)

Formula

a(n+6) = 8*a(n).
a(6*k) = 8^k; a(A008588(n))=A001018(n);
a(6*k+1) = a(6*k+2) = 2*8^k; a(A016921(n))=a(A016933(n))=A013730(n);
a(6*k+3) = 3*8^k; a(A016945(n))=A103333(n+1);
a(6*k+4) = 5*8^k; a(A016957(n))=A067412(n+1);
a(6*k+5) = 8^(k+1); a(A016969(n))=A001018(n+1).
G.f.: (1 + 2*x + 2*x^2 + 3*x^3 + 5*x^4 + 8*x^5)/((1 - 2*x^2)*(1 + 2*x^2 + 4*x^4)). - Stefano Spezia, May 29 2024

Extensions

a(43)-a(44) from Stefano Spezia, May 29 2024

A165829 Totally multiplicative sequence with a(p) = 8.

Original entry on oeis.org

1, 8, 8, 64, 8, 64, 8, 512, 64, 64, 8, 512, 8, 64, 64, 4096, 8, 512, 8, 512, 64, 64, 8, 4096, 64, 64, 512, 512, 8, 512, 8, 32768, 64, 64, 64, 4096, 8, 64, 64, 4096, 8, 512, 8, 512, 512, 64, 8, 32768, 64, 512
Offset: 1

Views

Author

Jaroslav Krizek, Sep 28 2009

Keywords

Crossrefs

Programs

  • Mathematica
    8^PrimeOmega[Range[100]](* G. C. Greubel, Apr 09 2016 *)
  • PARI
    a(n) = 8^bigomega(n); \\ Altug Alkan, Apr 09 2016

Formula

a(n) = A001018(A001222(n)) = 8^bigomega(n) = 8^A001222(n).
Dirichlet g.f.: Product_{p prime} 1 / (1 - 8 * p^(-s)). - Ilya Gutkovskiy, Oct 30 2019
Previous Showing 21-30 of 133 results. Next