A232187
Number T(n,k) of parity alternating permutations of [n] with exactly k descents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.
Original entry on oeis.org
1, 1, 2, 1, 1, 5, 3, 2, 8, 2, 20, 44, 8, 6, 66, 66, 6, 114, 594, 414, 30, 24, 624, 1584, 624, 24, 864, 8784, 14544, 4464, 144, 120, 6840, 36240, 36240, 6840, 120, 8280, 147720, 471120, 353520, 55320, 840, 720, 86400, 857520, 1739520, 857520, 86400, 720, 96480
Offset: 0
T(5,0) = 2: 12345, 34125.
T(5,1) = 8: 12543, 14325, 14523, 32145, 34521, 52143, 52341, 54123.
T(5,2) = 2: 32541, 54321.
T(6,2) = 8: 163254, 165432, 321654, 325416, 541632, 543216, 632541, 654321.
T(7,0) = 6: 1234567, 1256347, 3412567, 3456127, 5612347, 5634127.
T(7,1) = 66: 1234765, 1236547, 1236745, ..., 7456123, 7612345, 7634125.
T(7,2) = 66: 1254763, 1276543, 1432765, ..., 7652143, 7652341, 7654123.
T(7,3) = 6: 3254761, 3276541, 5432761, 5476321, 7632541, 7654321.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 1, 1;
: 4 : 5, 3;
: 5 : 2, 8, 2;
: 6 : 20, 44, 8;
: 7 : 6, 66, 66, 6;
: 8 : 114, 594, 414, 30;
: 9 : 24, 624, 1584, 624, 24;
: 10 : 864, 8784, 14544, 4464, 144;
: 11 : 120, 6840, 36240, 36240, 6840, 120;
A301523
Integers which can be partitioned into two distinct factorials. 0! and 1! are not considered distinct.
Original entry on oeis.org
3, 7, 8, 25, 26, 30, 121, 122, 126, 144, 721, 722, 726, 744, 840, 5041, 5042, 5046, 5064, 5160, 5760, 40321, 40322, 40326, 40344, 40440, 41040, 45360, 362881, 362882, 362886, 362904, 363000, 363600, 367920, 403200, 3628801, 3628802, 3628806, 3628824, 3628920, 3629520, 3633840, 3669120, 3991680
Offset: 1
+ | 1 2 6 24
----+--------------------
1 |
2 | 3;
6 | 7, 8;
24 | 25, 26, 30;
120 | 121, 122, 126, 144;
A349280
Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k rounds; n >= 2, 1 <= k <= floor(n/2).
Original entry on oeis.org
2, 3, 8, 12, 30, 60, 144, 330, 120, 840, 2100, 1260, 5760, 15344, 11760, 1680, 45360, 127008, 113400, 30240, 403200, 1176120, 1169280, 428400, 30240, 3991680, 12054240, 13000680, 5821200, 831600, 43545600, 135508032, 155923680, 80415720, 16632000, 665280
Offset: 2
Triangle starts:
[2] 2;
[3] 3;
[4] 8, 12;
[5] 30, 60;
[6] 144, 330, 120;
[7] 840, 2100, 1260;
[8] 5760, 15344, 11760, 1680;
[9] 45360, 127008, 113400, 30240;
...
For n = 4, there are 8 ways to make one round and 12 ways to make two rounds.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
Row sums give
A066166 (Stanley's children's game).
Right border element of row n is
A001813(n/2) = |
A067994(n)| for even n.
-
ser := series((1 - x)^(-x*t), x, 20): xcoeff := n -> coeff(ser, x, n):
T := (n, k) -> n!*coeff(xcoeff(n), t, k):
seq(seq(T(n, k), k = 1..iquo(n,2)), n = 2..12); # Peter Luschny, Nov 13 2021
# second Maple program:
A349280 := (n,k) -> binomial(n,k)*k!*abs(Stirling1(n-k,k)):
seq(print(seq(A349280(n,k), k=1..iquo(n,2))), n=2..12); # Mélika Tebni, May 03 2023
-
f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t), {x, 0, n}, {t, 0, k}]
Table[f[k, n], {n, 2, 12}, {k, 1, Floor[n/2]}]
A180013
Triangular array read by rows: T(n,k) = number of fixed points in the permutations of {1,2,...,n} that have exactly k cycles; n>=1, 1<=k<=n.
Original entry on oeis.org
1, 0, 2, 0, 3, 3, 0, 8, 12, 4, 0, 30, 55, 30, 5, 0, 144, 300, 210, 60, 6, 0, 840, 1918, 1575, 595, 105, 7, 0, 5760, 14112, 12992, 5880, 1400, 168, 8, 0, 45360, 117612, 118188, 60921, 17640, 2898, 252, 9, 0, 403200, 1095840, 1181240, 672840, 224490, 45360, 5460, 360, 10
Offset: 1
T(4,3)= 12 because there are 12 fixed points in the permutations of 4 that have 3 cycles: (1)(2)(4,3); (1)(3,2)(4); (1)(4,2)(3); (2,1)(3)(4); (3,1)(2)(4); (4,1)(2)(3) where the permutations are represented in their cycle notation.
1
0 2
0 3 3
0 8 12 4
0 30 55 30 5
0 144 300 210 60 6
0 840 1918 1575 595 105 7
-
egf:= k-> x * (log(1/(1-x)))^(k-1) / (k-1)!:
T:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jan 16 2011
# As coefficients of polynomials:
with(PolynomialTools): with(ListTools): A180013_row := proc(n)
`if`(n=0, 1,(n+1)!*hypergeom([-n,1-x],[1],1)); CoefficientList(simplify(%),x) end: FlattenOnce([seq(A180013_row(n), n=0..9)]); # Peter Luschny, Jan 28 2016
-
Flatten[Table[Table[(n + 1) Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 9}],1] (* Olivier Gérard, Oct 23 2012 *)
A195326
Numerators of fractions leading to e - 1/e (A174548).
Original entry on oeis.org
0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0
a(0) = 1 - 1;
a(1) = 2 - 0;
a(2) = 5/2 - 1/2.
-
taylExp1 := proc(n)
add(1/j!,j=0..n) ;
end proc:
A000255 := proc(n)
if n <=1 then
1;
else
n*procname(n-1)+(n-1)*procname(n-2) ;
end if;
end proc:
A001048 := proc(n)
n!+(n-1)! ;
end proc:
A195326 := proc(n)
if n = 0 then
0;
elif n =1 then
2;
else
taylExp1(n) -A000255(n-2)/A001048(n-1);
end if;
numer(%);
end proc:
seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011
Material meant to be placed in other sequences removed by
R. J. Mathar, Oct 14 2011
A349426
Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k nontrivial rounds; n >= 3, 1 <= k <= floor(n/3).
Original entry on oeis.org
3, 8, 30, 144, 90, 840, 840, 5760, 7280, 45360, 66528, 7560, 403200, 657720, 151200, 3991680, 7064640, 2356200, 43545600, 82285632, 34890240, 1247400, 518918400, 1035365760, 521080560, 43243200, 6706022400, 14013679680, 8034586560, 1059458400
Offset: 3
Triangle starts:
[3] 3;
[4] 8;
[5] 30;
[6] 144, 90;
[7] 840, 840;
[8] 5760, 7280;
[9] 45360, 66528, 7560;
[10] 403200, 657720, 151200;
[11] 3991680, 7064640, 2356200;
[12] 43545600, 82285632, 34890240, 1247400;
[13] 518918400, 1035365760, 521080560, 43243200;
[14] 6706022400, 14013679680, 8034586560, 1059458400;
...
For n = 6, there are 144 ways to make one round and 90 ways to make two rounds.
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)
Row sums give
A066165 (variant of Stanley's children's game).
Right border element of row n is
A166334(n/3) for each n divisible by 3.
-
f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t) Exp[-x^2 t], {x, 0, n}, {t, 0, k}]
Table[f[k, n], {n, 2, 14}, {k, 1, Floor[n/3]}]
A373967
Triangle read by rows: T(n,k) = (-1)^n * n! + (-1)^(k+1) * k! for n >= 2 and 1 <= k <= n-1.
Original entry on oeis.org
3, -5, -8, 25, 22, 30, -119, -122, -114, -144, 721, 718, 726, 696, 840, -5039, -5042, -5034, -5064, -4920, -5760, 40321, 40318, 40326, 40296, 40440, 39600, 45360, -362879, -362882, -362874, -362904, -362760, -363600, -357840, -403200, 3628801, 3628798, 3628806, 3628776, 3628920, 3628080, 3633840, 3588480, 3991680
Offset: 2
Triangle begins:
3;
-5, -8;
25, 22, 30;
-119, -122, -114, -144;
721, 718, 726, 696, 840;
-5039, -5042, -5034, -5064, -4920, -5760;
...
-
T[n_,k_]:= (-1)^n*n! + (-1)^(k+1)*k!; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)
A380338
Expansion of e.g.f. log(1 - x * log(1 - x)).
Original entry on oeis.org
0, 0, 2, 3, -4, -30, 54, 1260, 3856, -36288, -279000, 2970000, 56725008, 109343520, -5495740992, -26086263840, 1293641890560, 21771049466880, -45508965806592, -4589738336217600, 10493846174810880, 2423866077943511040, 34328754265480012800, -358930542362135546880
Offset: 0
-
my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(log(1-x*log(1-x)))))
-
a(n) = n!*sum(k=1, n\2, (-1)^(k-1)*(k-1)!*abs(stirling(n-k, k, 1))/(n-k)!);
A052225
(n+1)!*(n+3)-3.
Original entry on oeis.org
5, 27, 141, 837, 5757, 45357, 403197, 3991677, 43545597, 518918397, 6706022397, 93405311997, 1394852659197, 22230464255997, 376610217983997, 6758061133823997, 128047474114559997, 2554547108585471997
Offset: 1
Andreas Ulvaer (aulvaer(AT)yahoo.com), Feb 20 2000
a(2)=27 because 27=(2+1)!*(2+3)-3 or 3*2*1*5-3.
Original entry on oeis.org
1, 4, 11, 37, 163, 907, 6067, 47107, 415027, 4084147, 44363827, 526994227, 6793931827, 94451224627, 1408352613427, 22418320792627, 379413423256627, 6802709918872627, 128803497755800627, 2568107879638168627, 53780695151756440627, 1180214324937540760627
Offset: 1
a(5) = 163 sum of row 5 terms of triangle A130478: (120 + 30 + 8 + 3 + 2); where (30, 8, 3, 2) = the first 4 reversed terms of A001048.
a(5) = 163 = 5! + A130495(4) = 120 + 43.
a(5) = 163 = 5! + (4! + 3!) + (3! + 2!) + (2! + 1!) + (1! + 1).
Comments