cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 44 results. Next

A232187 Number T(n,k) of parity alternating permutations of [n] with exactly k descents from odd to even numbers; triangle T(n,k), n>=0, 0<=k<=max(0,floor((n-1)/2)), read by rows.

Original entry on oeis.org

1, 1, 2, 1, 1, 5, 3, 2, 8, 2, 20, 44, 8, 6, 66, 66, 6, 114, 594, 414, 30, 24, 624, 1584, 624, 24, 864, 8784, 14544, 4464, 144, 120, 6840, 36240, 36240, 6840, 120, 8280, 147720, 471120, 353520, 55320, 840, 720, 86400, 857520, 1739520, 857520, 86400, 720, 96480
Offset: 0

Views

Author

Alois P. Heinz, Nov 20 2013

Keywords

Comments

T(2n+1,k) = T(2n+1,n-k).
T(2n+2,n) = T(2n+1,n) + T(2n+3,n+1).

Examples

			T(5,0) = 2: 12345, 34125.
T(5,1) = 8: 12543, 14325, 14523, 32145, 34521, 52143, 52341, 54123.
T(5,2) = 2: 32541, 54321.
T(6,2) = 8: 163254, 165432, 321654, 325416, 541632, 543216, 632541, 654321.
T(7,0) = 6: 1234567, 1256347, 3412567, 3456127, 5612347, 5634127.
T(7,1) = 66: 1234765, 1236547, 1236745, ..., 7456123, 7612345, 7634125.
T(7,2) = 66: 1254763, 1276543, 1432765, ..., 7652143, 7652341, 7654123.
T(7,3) = 6: 3254761, 3276541, 5432761, 5476321, 7632541, 7654321.
Triangle T(n,k) begins:
:  0 :   1;
:  1 :   1;
:  2 :   2;
:  3 :   1,    1;
:  4 :   5,    3;
:  5 :   2,    8,     2;
:  6 :  20,   44,     8;
:  7 :   6,   66,    66,     6;
:  8 : 114,  594,   414,    30;
:  9 :  24,  624,  1584,   624,   24;
: 10 : 864, 8784, 14544,  4464,  144;
: 11 : 120, 6840, 36240, 36240, 6840, 120;
		

Crossrefs

Column k=0 gives: A199660.
Row sums give: A092186 (for n>0).
T(2n+1,n) = A000142(n).
T(2n+2,n) = A001048(n+1).

Formula

T(2n+1,k) = n! * A173018(n+1,k) = A000142(n) * A173018(n+1,k).

A301523 Integers which can be partitioned into two distinct factorials. 0! and 1! are not considered distinct.

Original entry on oeis.org

3, 7, 8, 25, 26, 30, 121, 122, 126, 144, 721, 722, 726, 744, 840, 5041, 5042, 5046, 5064, 5160, 5760, 40321, 40322, 40326, 40344, 40440, 41040, 45360, 362881, 362882, 362886, 362904, 363000, 363600, 367920, 403200, 3628801, 3628802, 3628806, 3628824, 3628920, 3629520, 3633840, 3669120, 3991680
Offset: 1

Views

Author

Seiichi Manyama, Mar 23 2018

Keywords

Comments

Numbers of the form i! + j! where i > j > 0. - Altug Alkan, Mar 23 2018
Primes in this sequence are A088332(n) for n > 1.

Examples

			    + |   1    2    6   24
  ----+--------------------
    1 |
    2 |   3;
    6 |   7,   8;
   24 |  25,  26,  30;
  120 | 121, 122, 126, 144;
		

Crossrefs

Programs

  • Mathematica
    Union[Total/@Subsets[Range[10]!,{2}]] (* Harvey P. Dale, Aug 25 2020 *)

A349280 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k rounds; n >= 2, 1 <= k <= floor(n/2).

Original entry on oeis.org

2, 3, 8, 12, 30, 60, 144, 330, 120, 840, 2100, 1260, 5760, 15344, 11760, 1680, 45360, 127008, 113400, 30240, 403200, 1176120, 1169280, 428400, 30240, 3991680, 12054240, 13000680, 5821200, 831600, 43545600, 135508032, 155923680, 80415720, 16632000, 665280
Offset: 2

Views

Author

Steven Finch, Nov 13 2021

Keywords

Comments

A round means the same as a directed ring or circle.

Examples

			Triangle starts:
[2]     2;
[3]     3;
[4]     8,     12;
[5]    30,     60;
[6]   144,    330,    120;
[7]   840,   2100,   1260;
[8]  5760,  15344,  11760,  1680;
[9] 45360, 127008, 113400, 30240;
...
For n = 4, there are 8 ways to make one round and 12 ways to make two rounds.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)

Crossrefs

Row sums give A066166 (Stanley's children's game).
Column 1 gives A001048.
Right border element of row n is A001813(n/2) = |A067994(n)| for even n.

Programs

  • Maple
    ser := series((1 - x)^(-x*t), x, 20): xcoeff := n -> coeff(ser, x, n):
    T := (n, k) -> n!*coeff(xcoeff(n), t, k):
    seq(seq(T(n, k), k = 1..iquo(n,2)), n = 2..12); # Peter Luschny, Nov 13 2021
    # second Maple program:
    A349280 := (n,k) -> binomial(n,k)*k!*abs(Stirling1(n-k,k)):
    seq(print(seq(A349280(n,k), k=1..iquo(n,2))), n=2..12); # Mélika Tebni, May 03 2023
  • Mathematica
    f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t), {x, 0, n}, {t, 0, k}]
    Table[f[k, n], {n, 2, 12}, {k, 1, Floor[n/2]}]

Formula

G.f.: (1 - x)^(-x*t).
T(n, k) = binomial(n, k)*k!*|Stirling1(n-k, k)|. - Mélika Tebni, May 03 2023
The above formula can also be written as T(n, k) = A008279(n, k)*A331327(n, k) or as T(n, k) = A265609(n + 1, k)*A331327(n, k). - Peter Luschny, May 03 2023

A180013 Triangular array read by rows: T(n,k) = number of fixed points in the permutations of {1,2,...,n} that have exactly k cycles; n>=1, 1<=k<=n.

Original entry on oeis.org

1, 0, 2, 0, 3, 3, 0, 8, 12, 4, 0, 30, 55, 30, 5, 0, 144, 300, 210, 60, 6, 0, 840, 1918, 1575, 595, 105, 7, 0, 5760, 14112, 12992, 5880, 1400, 168, 8, 0, 45360, 117612, 118188, 60921, 17640, 2898, 252, 9, 0, 403200, 1095840, 1181240, 672840, 224490, 45360, 5460, 360, 10
Offset: 1

Views

Author

Geoffrey Critzer, Jan 13 2011

Keywords

Comments

Row sums = n! which is the number of fixed points in all the permutations of {1,2,...,n}.
It appears that column k = 2 is A001048 (with different offset).
From Olivier Gérard, Oct 23 2012: (Start)
This is a multiple of the triangle of Stirling numbers of the first kind, A180013(n,k) = (n)*A132393(n-1,k).
Another interpretation is : T(n,n-k) is the total number of ways to insert the symbol n among the cycles of permutations of [n-1] with (n+1-k) cycles to form a canonical cycle representation of a permutation of [n]. For each cycle of length c, there are c places to insert a symbol, and for each permutation there is the possibility to create a new cycle (a fixed point).
(End)

Examples

			T(4,3)= 12 because there are 12 fixed points in the permutations of 4 that have 3 cycles: (1)(2)(4,3); (1)(3,2)(4); (1)(4,2)(3); (2,1)(3)(4); (3,1)(2)(4); (4,1)(2)(3) where the permutations are represented in their cycle notation.
1
0   2
0   3    3
0   8   12    4
0  30   55   30   5
0 144  300  210  60    6
0 840 1918 1575 595  105   7
		

Crossrefs

Cf. A000142, A001048. Diagonal, lower diagonal give: A000027, A027480(n+1).

Programs

  • Maple
    egf:= k-> x * (log(1/(1-x)))^(k-1) / (k-1)!:
    T:= (n,k)-> n! * coeff(series(egf(k), x, n+1), x, n):
    seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Jan 16 2011
    # As coefficients of polynomials:
    with(PolynomialTools): with(ListTools): A180013_row := proc(n)
    `if`(n=0, 1,(n+1)!*hypergeom([-n,1-x],[1],1)); CoefficientList(simplify(%),x) end: FlattenOnce([seq(A180013_row(n), n=0..9)]); # Peter Luschny, Jan 28 2016
  • Mathematica
    Flatten[Table[Table[(n + 1) Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 9}],1] (* Olivier Gérard, Oct 23 2012 *)

Formula

E.g.f.: for column k: x*(log(1/(1-x)))^(k-1)/(k-1)!.
T(n, k) = [x^k] (n+1)!*hypergeom([-n,1-x],[1],1) for n>0. - Peter Luschny, Jan 28 2016

Extensions

More terms from Alois P. Heinz, Jan 16 2011

A195326 Numerators of fractions leading to e - 1/e (A174548).

Original entry on oeis.org

0, 2, 2, 7, 7, 47, 47, 5923, 5923, 426457, 426457, 15636757, 15636757, 7318002277, 7318002277, 1536780478171, 1536780478171, 603180793741, 603180793741, 142957467201379447, 142957467201379447
Offset: 0

Views

Author

Paul Curtz, Oct 12 2011

Keywords

Comments

The sequence of approximations of exp(1) obtained by truncating the Taylor series of exp(x) after n terms is A061354(n)/A061355(n) = 1, 2, 5/2, 8/3, 65/24, ...
A Taylor series of exp(-1) is 1, 0, 1/2, 1/3, 3/8, ... and (apart from the first 2 terms) given by A000255(n)/A001048(n). Subtracting both sequences term by term we obtain a series for exp(1) - exp(-1) = 0, 2, 2, 7/3, 7/3, 47/20, 47/20, 5923/2520, 5923/2520, 426457/181440, 426457/181440, ... which defines the numerators here.
Each second of the denominators (that is 3, 2520, 19958400, ...) is found in A085990 (where each third term, that is 60, 19958400, ...) is to be omitted.
This numerator sequence here is basically obtained by doubling entries of A051397, A009628, A087208, or A186763, caused by the standard associations between cosh(x), sinh(x) and exp(x).

Examples

			a(0) =  1  -  1;
a(1) =  2  -  0;
a(2) = 5/2 - 1/2.
		

Crossrefs

Programs

  • Maple
    taylExp1 := proc(n)
            add(1/j!,j=0..n) ;
    end proc:
    A000255 := proc(n)
            if n <=1 then
                    1;
            else
                    n*procname(n-1)+(n-1)*procname(n-2) ;
            end if;
    end proc:
    A001048 := proc(n)
            n!+(n-1)! ;
    end proc:
    A195326 := proc(n)
            if n = 0 then
                    0;
            elif n =1 then
                    2;
            else
                    taylExp1(n) -A000255(n-2)/A001048(n-1);
            end if;
              numer(%);
    end proc:
    seq(A195326(n),n=0..20) ; # R. J. Mathar, Oct 14 2011

Extensions

Material meant to be placed in other sequences removed by R. J. Mathar, Oct 14 2011

A349426 Irregular triangle read by rows: T(n,k) is the number of arrangements of n labeled children with exactly k nontrivial rounds; n >= 3, 1 <= k <= floor(n/3).

Original entry on oeis.org

3, 8, 30, 144, 90, 840, 840, 5760, 7280, 45360, 66528, 7560, 403200, 657720, 151200, 3991680, 7064640, 2356200, 43545600, 82285632, 34890240, 1247400, 518918400, 1035365760, 521080560, 43243200, 6706022400, 14013679680, 8034586560, 1059458400
Offset: 3

Views

Author

Steven Finch, Nov 17 2021

Keywords

Comments

A nontrivial round means the same as a ring or circle consisting of more than one child.

Examples

			Triangle starts:
[3]           3;
[4]           8;
[5]          30;
[6]         144,          90;
[7]         840,         840;
[8]        5760,        7280;
[9]       45360,       66528,       7560;
[10]     403200,      657720,     151200;
[11]    3991680,     7064640,    2356200;
[12]   43545600,    82285632,   34890240,    1247400;
[13]  518918400,  1035365760,  521080560,   43243200;
[14] 6706022400, 14013679680, 8034586560, 1059458400;
...
For n = 6, there are 144 ways to make one round and 90 ways to make two rounds.
		

References

  • R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999 (Sec. 5.2)

Crossrefs

Row sums give A066165 (variant of Stanley's children's game).
Column 1 gives A001048.
Right border element of row n is A166334(n/3) for each n divisible by 3.
Cf. A066166, A349280 (correspond to Stanley's original game).

Programs

  • Mathematica
    f[k_, n_] := n! SeriesCoefficient[(1 - x)^(-x t) Exp[-x^2 t], {x, 0, n}, {t, 0, k}]
    Table[f[k, n], {n, 2, 14}, {k, 1, Floor[n/3]}]

Formula

E.g.f.: (1 - x)^(-x*t) * exp(-x^2*t).

A373967 Triangle read by rows: T(n,k) = (-1)^n * n! + (-1)^(k+1) * k! for n >= 2 and 1 <= k <= n-1.

Original entry on oeis.org

3, -5, -8, 25, 22, 30, -119, -122, -114, -144, 721, 718, 726, 696, 840, -5039, -5042, -5034, -5064, -4920, -5760, 40321, 40318, 40326, 40296, 40440, 39600, 45360, -362879, -362882, -362874, -362904, -362760, -363600, -357840, -403200, 3628801, 3628798, 3628806, 3628776, 3628920, 3628080, 3633840, 3588480, 3991680
Offset: 2

Views

Author

Mohammed Yaseen, Jun 24 2024

Keywords

Examples

			Triangle begins:
      3;
     -5,    -8;
     25,    22,    30;
   -119,  -122,  -114,  -144;
    721,   718,   726,   696,   840;
  -5039, -5042, -5034, -5064, -4920, -5760;
  ...
		

Crossrefs

Unsigned diagonals: A001048, A213167.

Programs

  • Mathematica
    T[n_,k_]:= (-1)^n*n! + (-1)^(k+1)*k!; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* Stefano Spezia, Jun 24 2024 *)

Formula

Integral_{1..e} (log(x)^k - log(x)^n) dx = A373966(n,k)*e + T(n,k).

A380338 Expansion of e.g.f. log(1 - x * log(1 - x)).

Original entry on oeis.org

0, 0, 2, 3, -4, -30, 54, 1260, 3856, -36288, -279000, 2970000, 56725008, 109343520, -5495740992, -26086263840, 1293641890560, 21771049466880, -45508965806592, -4589738336217600, 10493846174810880, 2423866077943511040, 34328754265480012800, -358930542362135546880
Offset: 0

Views

Author

Seiichi Manyama, Jan 21 2025

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(log(1-x*log(1-x)))))
    
  • PARI
    a(n) = n!*sum(k=1, n\2, (-1)^(k-1)*(k-1)!*abs(stirling(n-k, k, 1))/(n-k)!);

Formula

a(n) = n! * Sum_{k=1..floor(n/2)} (-1)^(k-1) * (k-1)! * |Stirling1(n-k,k)|/(n-k)!.
a(0) = a(1) = 0; a(n) = n * (n-2)! - Sum_{k=2..n-1} k * (k-2)! * binomial(n-1,k) * a(n-k).

A052225 (n+1)!*(n+3)-3.

Original entry on oeis.org

5, 27, 141, 837, 5757, 45357, 403197, 3991677, 43545597, 518918397, 6706022397, 93405311997, 1394852659197, 22230464255997, 376610217983997, 6758061133823997, 128047474114559997, 2554547108585471997
Offset: 1

Views

Author

Andreas Ulvaer (aulvaer(AT)yahoo.com), Feb 20 2000

Keywords

Examples

			a(2)=27 because 27=(2+1)!*(2+3)-3 or 3*2*1*5-3.
		

Programs

Formula

a(n) = A001048(n+2) - 3. - Michel Marcus, Jun 19 2013

Extensions

More terms from James Sellers, Feb 22 2000

A130494 Row sums of triangle A130478.

Original entry on oeis.org

1, 4, 11, 37, 163, 907, 6067, 47107, 415027, 4084147, 44363827, 526994227, 6793931827, 94451224627, 1408352613427, 22418320792627, 379413423256627, 6802709918872627, 128803497755800627, 2568107879638168627, 53780695151756440627, 1180214324937540760627
Offset: 1

Views

Author

Gary W. Adamson, May 31 2007

Keywords

Examples

			a(5) = 163 sum of row 5 terms of triangle A130478: (120 + 30 + 8 + 3 + 2); where (30, 8, 3, 2) = the first 4 reversed terms of A001048.
a(5) = 163 = 5! + A130495(4) = 120 + 43.
a(5) = 163 = 5! + (4! + 3!) + (3! + 2!) + (2! + 1!) + (1! + 1).
		

Crossrefs

Formula

Row sums of triangle A130478. a(1) = 1; a(n), n>1 = n! + A130495(n-1). a(n) = n! + ((n-1)! + (n-2)!) + ((n-2)! + (n-3)!) + ... + (1! + 1). a(n) = n! + sum of first (n-1) terms of A001048 in reverse, where A001048 = (2, 3, 8, 30, 144, ...).

Extensions

More terms from Alois P. Heinz, Dec 02 2018
Previous Showing 31-40 of 44 results. Next