cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 53 results. Next

A213893 Fixed points of a sequence h(n) defined by the minimum number of 4's in the relation n*[n,4,4,...,4,n] = [x,...,x] between simple continued fractions.

Original entry on oeis.org

3, 7, 43, 67, 103, 127, 163, 223, 283, 367, 463, 487, 523, 547, 607, 643, 727, 787, 823, 883, 907, 1063, 1123, 1303, 1327, 1423, 1447, 1543, 1567, 1627, 1663, 1723, 1747, 1783, 1867, 1987, 2083, 2143, 2203, 2287, 2347, 2383, 2467, 2683, 2707, 2767, 2803, 2887
Offset: 1

Views

Author

Art DuPre, Jun 23 2012

Keywords

Comments

In a variant of A213891, multiply n by a number with simple continued fraction [n,4,4,...,4,n] and increase the number of 4's until the continued fraction of the product has the same first and last entry (called x in the NAME). Examples are
2*[2,4,2] = [4,2,4],
3*[3,4,4,4,3] = [9,1,2,2,2,1,9],
4*[4,4,4] = [16,1,16],
5*[5,4,4,4,4,5] = [26,5,1,1,5,26].
The number of 4's needed defines the sequence h(n) = 1, 3, 1, 4, 3, 7, 3, 3, 9, ... (n>=2).
The current sequence contains the fixed points of h, i.e., those n where h(n)=n.
We conjecture that this sequence contains prime numbers analogous to the sequence of prime numbers A000057, in the sense that, instead of referring to the Fibonacci sequences(sequences satisfying f(n) = f(n-1) + f(n-2) with arbitrary positive integer values for f(1) and f(2)) it refers to the sequences satisfying f(n) = 4*f(n-1) + f(n-2), A001076, A001077, A015448, etc. This would mean that a prime is in the sequence if and only if it divides some term in each of the sequences satisfying f(n) = 4*f(n-1) + f(n-2).
The above sequence h() is recorded as A262214. - M. F. Hasler, Sep 15 2015

Crossrefs

Programs

  • Mathematica
    f[m_, n_] := Block[{c, k = 1}, c[x_, y_] := ContinuedFraction[x FromContinuedFraction[Join[{x}, Table[m, {y}], {x}]]]; While[First@ c[n, k] != Last@ c[n, k], k++]; k]; Select[Range[2, 1000], f[4, #] == # &] (* Michael De Vlieger, Sep 16 2015 *)
  • PARI
    {a(n) = local(t, m=1); if( n<2, 0, while( 1,
       t = contfracpnqn( concat([n, vector(m,i,4), n]));
       t = contfrac(n*t[1,1]/t[2,1]);
       if(t[1]
    				

A226956 a(0)=a(1)=1, a(n+2) = a(n+1) + a(n) - A128834(n).

Original entry on oeis.org

1, 1, 2, 2, 3, 5, 9, 15, 24, 38, 61, 99, 161, 261, 422, 682, 1103, 1785, 2889, 4675, 7564, 12238, 19801, 32039, 51841, 83881, 135722, 219602, 355323, 574925, 930249, 1505175, 2435424, 3940598, 6376021, 10316619, 16692641, 27009261, 43701902, 70711162, 114413063, 185124225, 299537289
Offset: 0

Views

Author

Paul Curtz, Jun 24 2013

Keywords

Comments

a(n) and differences:
1, 1, 2, 2, 3, 5, 9, 15, 24, 38, ... a(n)
0, 1, 0, 1, 2, 4, 6, 9, 14, 23, 38, ... b(n)
1, -1, 1, 1, 2, 2, 3, 5, 9, 15, 24, 38, ... a(n-2)
-2, 2, 0, 1, 0, 1, 2, 4, 6, 9, 14, 23, 38, ... b(n-2)
4, -2, 1,-1, 1, 1, 2, 2, 3, 5, 9, ... a(n-4)
-6, 3,-2, 2, 0, 1, 0, 1, 2, 4, 6, 9, ... b(n-4)
9, -5, 4,-2, 1,-1, 1, 1, 2, 2, 3, 5, 9, ... a(n-6)
-14, 9,-6, 3,-2, 2, 0, 1 0, 1, 2, ... b(n-6)
23,-15, 9,-5, 4,-2, 1, -1, 1, 1, 2, 2, ... a(n-8)
a(n)-b(n+1) = period 6: repeat 0, 1, 1, 0, -1, -1 = A128834(n).
Diagonals with the same number give 1, 2, 9, 38, ... = A001077(n).
Second column: the (n+2)-th term is identical to a(n+1) signed.
a(n+1) is identical to its twice shifted inverse binomial transform signed.
a(n+1)/a(n) tends to A001622 (the golden ratio) as n -> infinity.

Examples

			a(0) = a(1) = 1.
a(2) = a(3) = 2.
a(4) = 2*a(3) - a(2) + a(0) = 4-2+1 = 3.
a(5) = 6-2+1 = 5.
		

Crossrefs

Cf. Diagonals in A024490.

Programs

  • Magma
    I:=[1, 1, 2, 2]; [n le 4 select I[n] else 2*Self(n-1) - Self(n-2) + Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
  • Mathematica
    a[n_] := (LucasL[n] + {0, 1, 1, 0, -1, -1}[[Mod[n, 6] + 1]])/2; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 28 2013, after R. J. Mathar *)
    LinearRecurrence[{2,-1,0,1}, {1,1,2,2}, 30] (* G. C. Greubel, Jan 15 2018 *)
  • PARI
    x='x+O('x^30); Vec((x-1)*(1+x^2)/((x^2+x-1)*(x^2-x+1))) \\ G. C. Greubel, Jan 15 2018
    

Formula

a(n+6) - a(n-6) = 20*A000045(n).
a(n) = 2*a(n-1) - a(n-2) + a(n-4).
a(n) = 3*a(n-3) + 5*a(n-6) + a(n-9) (plus many similar by telescoping the fundamental recurrence).
a(n+3) - a(n-3) = 2*A000032(n).
G.f.: (x-1)*(1+x^2) / ( (x^2+x-1)*(x^2-x+1) ). - R. J. Mathar, Jun 26 2013
2*a(n) = A000032(n) + A010892(n-1). - R. J. Mathar, Jun 26 2013
a(n+5) = a(n+4) + a(n+2) + A108014(n).
a(2n+1) + A226447(2n+2) = 2*A182895(n).
a(n) - a(n-2) = 0,2,1,1,1,3,6,... = abs(A111734(n-2)).

A328695 Rectangular array R read by descending antidiagonals: divide to each even term of the Wythoff array (A035513) by 2, and delete all others.

Original entry on oeis.org

1, 4, 2, 17, 9, 3, 72, 38, 5, 12, 305, 161, 8, 51, 6, 1292, 682, 13, 216, 10, 7, 5473, 2889, 21, 915, 16, 30, 14, 23184, 12238, 34, 3876, 26, 127, 59, 25, 98209, 51841, 55, 16419, 42, 538, 250, 106, 11, 416020, 219602, 89, 69552, 68, 2279, 1059, 449, 18, 33
Offset: 1

Views

Author

Clark Kimberling, Oct 26 2019

Keywords

Comments

Every positive integer occurs exactly once in R, and every row of R is a linear recurrence sequence. The appearance of a sequence s(r) below means that corresponding row of R is the same as s(r) except possibly for one or more initial terms of s(r).
Row 1 of R: A001076
Row 2 of R: A001077
Row 3 of R: A000045
Row 4 of R: A115179
Row 5 of R: A006355
Row 6 of R: A097924
Row 8 of R: A048875
Row 9 of R: A000032

Examples

			Row 1 of the Wythoff array is (1,2,3,5,8,13,21,34,55,89,144,...), so that row 1 of R is (1,4,17,72,...).
_______________
Northwest corner of R:
   1   4   17   72  305  1292   5473
   2   9   38  161  682  2889  12238
   3   5    8   13   21    34     55
  12  51  216  915 3876 16419  69552
   6  10   16   26   42    68    110
   7  30  127  538 2279  9654  40895
		

Crossrefs

Programs

  • Mathematica
    w[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k];
    Table[w[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten;
    q[n_, k_] := If[Mod[w[n, k], 2] == 0, w[n, k]/2, 0];
    t[n_] := Union[Table[q[n, k], {k, 1, 50}]];
    u[n_] := If[First[t[n]] == 0, Rest[t[n]], t[n]]
    Table[u[n], {n, 1, 10}] (* A328695 array *)
    v[n_, k_] := u[n][[k]];
    Table[v[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten (* A328695 sequence *)

A048877 a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=8.

Original entry on oeis.org

1, 8, 33, 140, 593, 2512, 10641, 45076, 190945, 808856, 3426369, 14514332, 61483697, 260449120, 1103280177, 4673569828, 19797559489, 83863807784, 355252790625, 1504874970284, 6374752671761
Offset: 0

Views

Author

Keywords

Comments

Generalized Pellian with second term of 8.

Crossrefs

Programs

  • Haskell
    a048877 n = a048877_list !! n
    a048877_list = 1 : 8 : zipWith (+) a048877_list (map (* 4) $ tail a048877_list)
    -- Reinhard Zumkeller, May 01 2013
  • Maple
    with(combinat): a:=n->4*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    CoefficientList[Series[(1+4x)/(1-4x-x^2),{x,0,20}],x]  (* Harvey P. Dale, Mar 30 2011 *)
    LinearRecurrence[{4,1},{1,8},30] (* Harvey P. Dale, Nov 03 2013 *)

Formula

a(n) = ((6+sqrt(5))*(2+sqrt(5))^n - (6-sqrt(5))*(2-sqrt(5))^n )/(2*sqrt(5)).
G.f.: (1+4*x)/(1-4*x-x^2). - Philippe Deléham, Nov 03 2008
a(n)=4*a(n-1) + a(n-2); a(0)=1, a(1)=8.

A048879 Generalized Pellian with second term of 10.

Original entry on oeis.org

1, 10, 41, 174, 737, 3122, 13225, 56022, 237313, 1005274, 4258409, 18038910, 76414049, 323695106, 1371194473, 5808472998, 24605086465, 104228818858, 441520361897, 1870310266446, 7922761427681, 33561355977170, 142168185336361, 602234097322614
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a048879 n = a048879_list !! n
    a048879_list = 1 : 10 : zipWith (+)
                            a048879_list (map (* 4) $ tail a048879_list)
    -- Reinhard Zumkeller, Mar 03 2014
  • Maple
    with(combinat): a:=n->6*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4,1},{1,10},30] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n) = ((8+sqrt(5))*(2+sqrt(5))^n - (8-sqrt(5))*(2-sqrt(5))^n)2*sqrt(5).
From Philippe Deléham, Nov 03 2008: (Start)
a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=10.
G.f.: (1+6*x)/(1-4*x-x^2). (End)
For n >= 1, a(n) equals the denominator of the continued fraction [4, 4, ..., 4, 10] (with n copies of 4). The numerator of that continued fraction is a(n+1). - ZhenShu Luan, Aug 05 2019

Extensions

More terms from Harvey P. Dale, Jul 18 2011

A083564 a(n) = L(n)*L(2n), where L(n) are the Lucas numbers (A000204).

Original entry on oeis.org

3, 21, 72, 329, 1353, 5796, 24447, 103729, 439128, 1860621, 7880997, 33385604, 141421803, 599075421, 2537719272, 10749959329, 45537545553, 192900159396, 817138154247, 3461452823129, 14662949371128, 62113250430021
Offset: 1

Views

Author

Gary W. Adamson, Jun 12 2003

Keywords

Comments

a(n+1)/a(n) -> (phi)^3 = ((1 + sqrt(5))/2)^3 = 4.236067...

Examples

			a(4) = Lucas(4)*Lucas(8) = 7*47 = 329.
		

Crossrefs

Third row of array A028412.

Programs

Formula

From Benoit Cloitre, Aug 30 2003: (Start)
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4);
a(n) = Fibonacci(4*n)/Fibonacci(n) = A000045(4*n)/A000045(n). (End)
a(n) = Lucas(3*n) + (-1)^n*Lucas(n).
From R. J. Mathar, Oct 27 2008: (Start)
G.f.: x*(3+12*x-9*x^2-4*x^3)/((1+x-x^2)*(1-4*x-x^2)).
a(n) = A061084(n+1) + 2*A001077(n). (End)
a(n) = (1+phi)^n + (-phi)^n + (2*phi+1)^n + (3-2*phi)^n, phi = (1+sqrt(5))/2. - Gary Detlefs, Dec 09 2012

A162770 a(n) = ((2+sqrt(5))*(1+sqrt(5))^n + (2-sqrt(5))*(1-sqrt(5))^n)/2.

Original entry on oeis.org

2, 7, 22, 72, 232, 752, 2432, 7872, 25472, 82432, 266752, 863232, 2793472, 9039872, 29253632, 94666752, 306348032, 991363072, 3208118272, 10381688832, 33595850752, 108718456832, 351820316672, 1138514460672, 3684310188032
Offset: 0

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Jul 13 2009

Keywords

Comments

Binomial transform of A162963. Inverse binomial transform of A001077 without initial 1.

Crossrefs

Programs

  • Magma
    Z:=PolynomialRing(Integers()); N:=NumberField(x^2-5); S:=[ ((2+r)*(1+r)^n+(2-r)*(1-r)^n)/2: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 19 2009
  • Mathematica
    LinearRecurrence[{2,4},{2,7},30] (* Harvey P. Dale, Jan 13 2015 *)

Formula

a(n) = 2*a(n-1) + 4*a(n-2) for n > 1; a(0) = 2, a(1) = 7.
G.f.: (2+3*x)/(1-2*x-4*x^2).
a(n) = 2^(n-1) * A000032(n+3). - Diego Rattaggi, Jun 24 2020

Extensions

Edited and extended beyond a(5) by Klaus Brockhaus, Jul 19 2009

A179604 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + x)/(1 - 2*x - 9*x^2 - 2*x^3).

Original entry on oeis.org

1, 3, 15, 59, 259, 1079, 4607, 19443, 82507, 349215, 1479879, 6267707, 26552755, 112474631, 476459471, 2018296131, 8549676763, 36216937647, 153417558423, 649886909195, 2752965719491, 11661748738583, 49399962770975
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in a given corner square (m = 1, 3, 7 or 9) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king goes crazy and turns into a red king, see A179596.
The sequence above corresponds to 4 red king vectors, i.e., A[5] vectors, with decimal [binary] values 327 [1,0,1,0,0,0,1,1,1], 333 [1,0,1,0,0,1,1,0,1], 357 [1,0,1,1,0,0,1,0,1] and 453 [1,1,1,0,0,0,1,0,1]. These vectors lead for the side squares to A015448 and for the central square to A179605.

Crossrefs

Programs

  • Maple
    with(LinearAlgebra): nmax:=22; m:=1; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:=[1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,0,1,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);
  • Mathematica
    LinearRecurrence[{2,9,2},{1,3,15},30] (* or *) CoefficientList[ Series[ (x+1)/(-2 x^3-9 x^2-2 x+1),{x,0,30}],x] (* Harvey P. Dale, Mar 17 2012 *)

Formula

G.f.: ( -1-x ) / ( (2*x+1)*(x^2 + 4*x - 1) ).
a(n) = 2*a(n-1) + 9*a(n-2) + 2*a(n-3) with a(0)=1, a(1)=3 and a(2)=15.
a(n) = (20*(-1/2)^(-n) + (5+7*sqrt(5))*A^(-n-1) + (5-7*sqrt(5))*B^(-n-1))/110 with A = (-2+sqrt(5)) and B:= (-2-sqrt(5)).
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n+1)/(A001076(n)*sqrt(5) - A001077(n)).

A179605 Eight white kings and one red king on a 3 X 3 chessboard. G.f.: (1 + 3*x - 2*x^2)/(1 - 2*x - 9*x^2 - 2*x^3).

Original entry on oeis.org

1, 5, 17, 81, 325, 1413, 5913, 25193, 106429, 451421, 1911089, 8097825, 34298293, 145299189, 615478665, 2607246617, 11044399597, 46784976077, 198184041761, 839521667409, 3556269662821, 15064602415845, 63814675131897
Offset: 0

Views

Author

Johannes W. Meijer, Jul 28 2010

Keywords

Comments

The a(n) represent the number of n-move routes of a fairy chess piece starting in the central square (m = 5) on a 3 X 3 chessboard. This fairy chess piece behaves like a king on the eight side and corner squares but on the central square the king toes crazy and turns into a red king, see A179596.
The sequence above corresponds to 4 red king vectors, A[5] vectors, with decimal [binary] values 327 [1,0,1,0,0,0,1,1,1], 333 [1,0,1,0,0,1,1,0,1], 357 [1,0,1,1,0,0,1,0,1] and 453 [1,1,1,0,0,0,1,0,1]. These vectors lead for the corner squares to A179604 and for the side squares to A015448.

Crossrefs

Cf. A001076, A001077, A015448, A179596, A179597 (central square), A179604.

Programs

  • Maple
    with(LinearAlgebra): nmax:=21; m:=5; A[1]:= [0,1,0,1,1,0,0,0,0]: A[2]:= [1,0,1,1,1,1,0,0,0]: A[3]:= [0,1,0,0,1,1,0,0,0]: A[4]:= [1,1,0,0,1,0,1,1,0]: A[5]:= [1,0,1,1,0,0,1,0,1]: A[6]:= [0,1,1,0,1,0,0,1,1]: A[7]:= [0,0,0,1,1,0,0,1,0]: A[8]:= [0,0,0,1,1,1,1,0,1]: A[9]:= [0,0,0,0,1,1,0,1,0]: A:=Matrix([A[1],A[2],A[3],A[4],A[5],A[6],A[7],A[8],A[9]]): for n from 0 to nmax do B(n):=A^n: a(n):= add(B(n)[m,k],k=1..9): od: seq(a(n), n=0..nmax);

Formula

G.f.: ( -1 - 3*x + 2*x^2 ) / ( (2*x+1)*(x^2 + 4*x - 1) ).
a(n) = 2*a(n-1) + 9*a(n-2) + 2*a(n-3) with a(0)=1, a(1)=5 and a(2)=17.
a(n) = (-4/11)*(-1/2)^(-n) + ((17+41*A)*A^(-n-1) + (17+41*B)*B^(-n-1))/110 with A = (-2+sqrt(5)) and B =(-2-sqrt(5)).
Limit_{k->oo} a(n+k)/a(k) = (-1)^(n+1)/(A001076(n)*sqrt(5) - A001077(n)).

A089926 a(n) = 12*a(n-1) + a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 73, 882, 10657, 128766, 1555849, 18798954, 227143297, 2744518518, 33161365513, 400680904674, 4841332221601, 58496667563886, 706801342988233, 8540112783422682, 103188154744060417, 1246797969712147686
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

The family of recurrences a(n) = 2*k*a(n-1) + a(n-2), a(0)=1, a(1)=k has solution a(n) = ((k+sqrt(k^2+1))^n + (k-sqrt(k^2+1))^n)/2; a(n) = Sum_{j=0..floor(n/2)} C(n,2k)*(k^2+1)^jk^(n-2j); a(n) = T(n,ki)*(-i)^n; e.g.f. exp(kx)*cosh(sqrt(k^2+1)*x).

Crossrefs

Essentially the same as A041060.

Formula

E.g.f.: exp(6x)*cosh(sqrt(37)x);
a(n) = ((6+sqrt(37))^n + (6-sqrt(37))^n)/2;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*37^k*6^(n-2k).
a(n) = T(n, 6i)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
G.f.: (1-6x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
Previous Showing 41-50 of 53 results. Next