cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 85 results. Next

A257713 Triangular numbers (A000217) that are the sum of ten consecutive triangular numbers.

Original entry on oeis.org

1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485, 15054681960, 60093684540, 296985006165, 4392693942120, 21708840917445, 86655051404085, 428252172907560, 6334261618255845, 31304133548245020, 124956524030977320, 617539336347666645
Offset: 1

Views

Author

Colin Barker, May 05 2015

Keywords

Examples

			1485 is in the sequence because T(54) = 1485 = 78+91+105+120+136+153+171+190+210+231 = T(12)+ ... +T(21).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 1442, -1442, 0, 0, -1, 1}, {1485, 7260, 28920, 142845, 2112540, 10440165, 41673885, 205953660, 3046252485}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)) + O(x^100))

Formula

G.f.: -15*x*(8*x^8-5*x^7+5*x^5-11445*x^4+7595*x^3+1444*x^2+385*x+99) / ((x-1)*(x^2-6*x-1)*(x^2+6*x-1)*(x^4+38*x^2+1)).

A259413 Triangular numbers (A000217) that are the sum of eleven consecutive triangular numbers.

Original entry on oeis.org

2145, 3916, 7381, 13530, 843051, 1547920, 2926990, 5374281, 335521560, 616057651, 1164924046, 2138939715, 133536727236, 245189386585, 463636832725, 851292621696, 53147281907775, 97584759792586, 184526294489911, 338812324484700, 21152484662556621
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2145 is in the sequence because T(65) = 2145 = 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 + 300 = T(14) + ... + T(24).
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 398, -398, 0, 0, -1, 1}, {2145, 3916, 7381, 13530, 843051, 1547920, 2926990, 5374281, 335521560}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-11*x*(6*x^8-x^7+x^5-2199*x^4+559*x^3+315*x^2+161*x+195)/((x-1)*(x^4-20*x^2+1)*(x^4+20*x^2+1)) + O(x^30))

Formula

G.f.: -11*x*(6*x^8-x^7+x^5-2199*x^4+559*x^3+315*x^2+161*x+195) / ((x-1)*(x^4-20*x^2+1)*(x^4+20*x^2+1)).

A259414 Triangular numbers (A000217) that are the sum of thirteen consecutive triangular numbers.

Original entry on oeis.org

2080, 414505, 28815436, 49317346, 3428789455, 698283666730, 48548229019381, 83089887991201, 5776831256176630, 1176469718198438755, 81794153348207147926, 139990009467226925656, 9732816854065394603605, 1982118534159467652450580, 137806953149317550935817071
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			2080 is in the sequence because T(64) = 2080 = 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 + 210 + 231 + 253 + 276 = T(11) + ... + T(23).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 1684802, -1684802, 0, 0, -1, 1}, {2080, 414505, 28815436, 49317346, 3428789455, 698283666730, 48548229019381, 83089887991201, 5776831256176630}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
  • PARI
    Vec(-13*x*(7*x^8 +153*x^6 +31725*x^5 -9608927*x^4 +1577070*x^3 +2184687*x^2 +31725*x +160) / ((x -1)*(x^2 -36*x -1)*(x^2 +36*x -1)*(x^4 +1298*x^2 +1)) + O(x^20))

Formula

G.f.: -13*x*(7*x^8 +153*x^6 +31725*x^5 -9608927*x^4 +1577070*x^3 +2184687*x^2 +31725*x +160) / ((x -1)*(x^2 -36*x -1)*(x^2 +36*x -1)*(x^4 +1298*x^2 +1)).

A259415 Triangular numbers (A000217) that are the sum of seventeen consecutive triangular numbers.

Original entry on oeis.org

1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130, 172110498456, 463127571831, 37515654714891, 100949879501796, 749369070309030, 2016457340944761, 163343152011830505, 439535752164830646, 3262752760014579156
Offset: 1

Views

Author

Colin Barker, Jun 26 2015

Keywords

Examples

			1326 is in the sequence because T(51) = 1326 = 6 + 10 + 15 + 21 + 28 + 36 + 45 + 55 + 66 + 78 + 91 + 105 + 120 + 136 + 153 + 171 + 190 = T(3) + ... + T(19).
		

Crossrefs

Programs

  • Mathematica
     LinearRecurrence[{1, 0, 0, 4354, -4354, 0, 0, -1, 1}, {1326, 9180, 24531, 1979055, 5325216, 39529386, 106368405, 8616365901, 23185550130}, 30] (* Vincenzo Librandi, Jun 27 2015 *)
    Module[{nn=10^6},Select[Total/@Partition[Accumulate[Range[nn]],17,1],OddQ[ Sqrt[8#+1]]&]] (* Harvey P. Dale, Mar 19 2023 *)
  • PARI
    Vec(-51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)) + O(x^30))

Formula

G.f.: -51*x*(11*x^8 +15*x^6 +154*x^5 -47593*x^4 +38324*x^3 +301*x^2 +154*x +26) / ((x -1)*(x^2 -8*x -1)*(x^2 +8*x -1)*(x^4 +66*x^2 +1)).

A054686 Multiset consisting of squares and triangular numbers.

Original entry on oeis.org

0, 0, 1, 1, 3, 4, 6, 9, 10, 15, 16, 21, 25, 28, 36, 36, 45, 49, 55, 64, 66, 78, 81, 91, 100, 105, 120, 121, 136, 144, 153, 169, 171, 190, 196, 210, 225, 231, 253, 256, 276, 289, 300, 324, 325, 351, 361, 378, 400, 406, 435, 441, 465, 484, 496, 528
Offset: 1

Views

Author

Michael Somos, Apr 19 2000

Keywords

Comments

Terms of A001110 occur twice. [Reinhard Zumkeller, Aug 03 2011]

References

  • Hofstadter, D. R., Fluid Concepts and Creative Analogies: Computer Models of the Fundamental Mechanisms of Thought, (together with the Fluid Analogies Research Group), NY: Basic Books, 1995. p. 15.

Crossrefs

Programs

  • Haskell
    a054686_list = merge a000290_list a000217_list where
       merge xs'@(x:xs) ys'@(y:ys)
         | x <= y    = x : merge xs ys'
         | otherwise = y : merge xs' ys
    -- Reinhard Zumkeller, Aug 03 2011
    
  • Mathematica
    stnos[max_]:=Module[{sqmax=Floor[Sqrt[max]],trmax=Floor[(Sqrt[ 8max+1]- 1)/2]}, Sort[Join[Range[0,sqmax]^2,Accumulate[Range[0,trmax]]]]]; stnos[ 528] (* Harvey P. Dale, Feb 06 2012 *)
  • PARI
    upTo(lim)=vecsort(concat(vector(sqrtint(lim\1)+1,n,(n-1)^2),vector(floor(sqrt(2+2*lim)+1/2),n,n*(n-1)/2))) \\ Charles R Greathouse IV, Aug 04 2011

Extensions

Offset fixed by Reinhard Zumkeller, Aug 04 2011

A076708 Numbers n such that triangular numbers T(n) and T(n+1) sum to another triangular number (that is also a perfect square).

Original entry on oeis.org

0, 5, 34, 203, 1188, 6929, 40390, 235415, 1372104, 7997213, 46611178, 271669859, 1583407980, 9228778025, 53789260174, 313506783023, 1827251437968, 10650001844789, 62072759630770, 361786555939835, 2108646576008244, 12290092900109633, 71631910824649558
Offset: 1

Views

Author

Bruce Corrigan (scentman(AT)myfamily.com), Oct 26 2002

Keywords

Comments

From T(k)+T(k+1) = (k*(k+1)+(k+1)*(k+2))/2 = (k+1)^2 any two consecutive triangular numbers sum to a square, the above sequence gives the sums that are also triangular. The units digit cycles through 0, 5, 4, 3, 8, 9, 0, 5, ...
Let P(b,e) be the polynomial 1+4*b+4*b^2+4*e+4*e^2. It appears that sequences A076708 and A076049 are special cases of the sequence of integers b such that P(b,b+n) is a perfect square. A076708 and A076049 for example are respectively the sequences of b's such that P(b,b+1) and P(b,b+2) are perfect squares. In fact it appears to be true that the sequence of integers b such that P(b,b+n) is a perfect square has the property that t(b)+t(b+n) is a triangular number. I have not had time to prove this but I do have evidence produced by Mathematica to support the assertion. - Robert Phillips (bobanne(AT)bellsouth.net), Sep 04 2009; corrected Sep 08 2009

Examples

			a(1) = (sqrt(2)*((3+2*sqrt(2))^2-(3-2*sqrt(2))^2)-8)/8 = (sqrt(2)*(9+12*sqrt(2)+8-9+12*sqrt(2)-8)-8)/8 = (sqrt(2)*24*sqrt(2)-8)/8 = (48-8)/8 = 40/8 = 5.
T(5) + T(6) = 15 + 21 = 36 = T(8).
		

Crossrefs

Programs

  • Mathematica
    Table[((3 + 2 Sqrt[2])^n - (3 - 2 Sqrt[2])^n)/(4 Sqrt[2]) - 1, {n, 1, 20}] (* Zerinvary Lajos, Jul 14 2009 *)
  • PARI
    concat(0, Vec(x^2*(x-5)/((x-1)*(x^2-6*x+1)) + O(x^100))) \\ Colin Barker, May 15 2015

Formula

Recursion: a(n+2) = 6*a(n+1)-a(n)+4, with a(0)=0 and a(1)=5.
G.f.: (5*x^2-x^3)/((1-x)*(1-6*x+x^2)).
Closed form: a(n)= ( sqrt(2)*( (3+2*sqrt(2))^(n+1) - (3-2*sqrt(2))^(n+1) )-8 )/8.
Also, if the entries in A001109 are denoted by b(n) then a(n) = b(n+1)-1.
a(n) = sqrt(A001110(n)) - 1. - Ivan N. Ianakiev, May 03 2014

A229131 Numbers k such that the distance between the k-th triangular number and the nearest square is exactly 1.

Original entry on oeis.org

1, 2, 4, 5, 15, 25, 32, 90, 148, 189, 527, 865, 1104, 3074, 5044, 6437, 17919, 29401, 37520, 104442, 171364, 218685, 608735, 998785, 1274592, 3547970, 5821348, 7428869, 20679087, 33929305, 43298624
Offset: 1

Views

Author

Ralf Stephan, Sep 15 2013

Keywords

Comments

The k-th triangular number (A000217(k)) is a square plus or minus one.
Union of A006451 (k-th triangular number is a square minus one) and A072221 (k-th triangular number is a square plus one).

Examples

			A000217(4)=10 and 10 - 3^2 = 1 so 4 is in the sequence.
A000217(5)=15 and 4^2 - 15 = 1 so 5 is in the sequence.
		

Crossrefs

Programs

  • PARI
    for(n=1,10^8,for(i=-1,1,f=0;if(i&&issquare(n*(n+1)/2+i),f=1;break));if(f,print1(n,",")))

Formula

G.f.: (-x^7 + 2*x^6 - 2*x^5 + 4*x^4 - 5*x^3 + 2*x^2 + x + 1)/((1-6*x^3+x^6)*(1-x)) (conjectured).

A342709 12-gonal (dodecagonal) square numbers.

Original entry on oeis.org

1, 64, 3025, 142129, 6677056, 313679521, 14736260449, 692290561600, 32522920134769, 1527884955772561, 71778070001175616, 3372041405099481409, 158414167969674450625, 7442093853169599697984, 349619996931001511354641, 16424697761903901433970161
Offset: 1

Views

Author

Bernard Schott, Mar 19 2021

Keywords

Comments

The 12-gonal square numbers k correspond to the nonnegative integer solutions of the Diophantine equation k = d*(5*d-4) = c^2, equivalent to (5*d-2)^2 - 5*c^2 = 4. Substituting x = 5*d-2 and y = c gives the Pell-Fermat's equation x^2 - 5*y^2 = 4.
The solutions x are in A342710, while corresponding solutions y that are also the indices c of the squares which are 12-gonal are in A033890.
The indices d of the corresponding 12-gonal which are squares are in A081068.

Examples

			142129 = 169*(5*169-4) = 377^2, so 142129 is the 169th 12-gonal number and the 377th square, hence 142129 is a term.
		

Crossrefs

Intersection of A000290 (squares) and A051624 (12-gonal numbers).
Similar for n-gonal squares: A001110 (triangular), A036353 (pentagonal), A046177 (hexagonal), A036354 (heptagonal), A036428 (octagonal), A036411 (9-gonal), A188896 (there are no 10-gonal squares > 1), A333641 (11-gonal), this sequence (12-gonal).

Programs

  • Maple
    with(combinat):
    seq(fibonacci(4*n-2)^2, n=1..16);
  • Mathematica
    Table[Fibonacci[4*n - 2]^2, {n, 1, 16}] (* Amiram Eldar, Mar 19 2021 *)
  • PARI
    a(n) = fibonacci(4*n-2)^2; \\ Michel Marcus, Mar 21 2021

Formula

G.f.: x*(1 + 16*x + x^2)/((1 - x)*(1 - 47*x + x^2)). - Stefano Spezia, Mar 20 2021
a(n) = 48*a(n-1) - 48*a(n-2) + a(n-3). - Kevin Ryde, Mar 20 2021
a(n) = 9*A161582(n) + 1. - Hugo Pfoertner, Mar 19 2021
a(n) = A033890(n-1)^2.

A181412 Squares whose reverse is a triangular number; trailing zeros are permitted.

Original entry on oeis.org

1, 100, 10000, 1000000, 1306449, 100000000, 130644900, 1044000721, 10000000000, 12957041241, 13064490000, 104400072100, 1000000000000, 1019072079081, 1174279984164, 1295704124100, 1306449000000, 6454272356676, 10440007210000
Offset: 1

Views

Author

Harvey P. Dale, Jan 30 2011

Keywords

Comments

Suggested by T. D. Noe.

Examples

			1306449 is 1143 squared, and its reverse, 9446031, is a triangular number.
		

Crossrefs

Programs

  • Mathematica
    trnos = Accumulate[Range[300000]]; Select[Range[210000]^2, MemberQ[trnos, FromDigits[Reverse[IntegerDigits[#]]]] &]

Extensions

a(12)-a(19) from Donovan Johnson, Feb 12 2011

A182334 Triangular numbers that differ from a square by 1.

Original entry on oeis.org

0, 1, 3, 10, 15, 120, 325, 528, 4095, 11026, 17955, 139128, 374545, 609960, 4726275, 12723490, 20720703, 160554240, 432224101, 703893960, 5454117903, 14682895930, 23911673955, 185279454480, 498786237505, 812293020528, 6294047334435, 16944049179226
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 25 2012

Keywords

Comments

From Robert G. Wilson v, Jun 20 2015: (Start)
Actually this sequence is the union of two subsequences; the triangular numbers that are less than a square by 1 and those that are greater than a square by 1.
The first sequence by index of the triangular numbers is A072221: b(n) = 6b(n-1) - b(n-2) + 2, with b(0)=1, b(1)=4.
And obviously the second sequence by index of the triangular numbers is A006451: c(n) = 6c(n-2) - c(n-4) + 2 with c(0)=0, c(1)=2, c(2)=5, c(3)=15.
(End)

Examples

			T(2) = 3 = 2^2 - 1, T(4) = 10 = 3^2 + 1,  T(5) = 15 = 4^2 - 1, and T(15) = 120 = 11^2 - 1.
		

References

  • Edward J. Barbeau, Pell's Equation (Springer 2003) at 17.

Crossrefs

Subsequence of A000217 and of A087279.

Programs

  • Magma
    I:=[0,1,3,10,15,120,325,528,4095,11026,17955]; [n le 11 select I[n] else 35*Self(n-3)-35*Self(n-6)+Self(n-9): n in [1..30]]; // Vincenzo Librandi, Jun 21 2015
    
  • Mathematica
    lst = {}; Do[t = n*(n + 1)/2; If[IntegerQ[(t - 1)^(1/2)] || IntegerQ[(t + 1)^(1/2)], AppendTo[lst, t]], {n, 0, 10^4}]; lst (* Arkadiusz Wesolowski, Aug 06 2012 *)
    b[n_] := b[n] = 6 b[n - 1] - b[n - 2] + 2; b[0] = 1; b[1] = 4; c[n_] := c[n] = 6 c[n - 2] - c[n - 4] + 2; c[0] = 0; c[1] = 2; c[2] = 5; c[3] = 15; #(# + 1)/2 & /@ Union@ Join[ Array[b, 9, 0], Array[c, 18, 0]] (* or *)
    #(# + 1)/2 & /@ Join[{0, 1}, LinearRecurrence[{1, 0, 6, -6, 0, -1, 1}, {2, 4, 5, 15, 25, 32, 90}, 35]] (* or *)
    #(# + 1)/2 & /@ CoefficientList[ Series[x + x^2 (1 + x) (2 + x^2 - 3 x^3 + x^4)/((1 - x) (1 - 6 x^3 + x^6)), {x, 0, 36}], x] (* Robert G. Wilson v, Jun 20 2015 *)
    a[n_] := a[n] = 35 a[n - 3] - 35 a[n - 6] + a[n - 9]; a[1] = 0; a[2] = 1; a[3] = 3; a[4] = 10; a[5] = 15; a[6] = 120; a[7] = 325; a[8] = 528; a[9] = 4095; a[10] = 11026; a[11] = 17955; Array[a, 36] (* Robert G. Wilson v after Charles R Greathouse IV, Apr 25 2012 *)
    Select[Accumulate[Range[0,6*10^6]],AnyTrue[Sqrt[#+{1,-1}],IntegerQ]&] (* or *) LinearRecurrence[{0,0,35,0,0,-35,0,0,1},{0,1,3,10,15,120,325,528,4095,11026,17955},40] (* The first program uses the AnyTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 24 2015 *)
  • PARI
    concat(0, Vec(x^2*(1+3*x+10*x^2-20*x^3+15*x^4-25*x^5+38*x^6+x^8-x^9)/((1-x)*(1+x+x^2)*(1-34*x^3+x^6)) + O(x^30))) \\ Colin Barker, Sep 17 2016

Formula

a(n) = 35*a(n-3) - 35*a(n-6) + a(n-9). - Charles R Greathouse IV, Apr 25 2012
G.f.: x^2*(1+3*x+10*x^2-20*x^3+15*x^4-25*x^5+38*x^6+x^8-x^9) / ((1-x)*(1+x+x^2)*(1-34*x^3+x^6)). - Colin Barker, Sep 17 2016
Previous Showing 31-40 of 85 results. Next