cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 85 results. Next

A253514 Centered heptagonal numbers (A069099) which are also centered octagonal numbers (A016754).

Original entry on oeis.org

1, 841, 755161, 678133681, 608963290321, 546848356574521, 491069215240629481, 440979608437728699361, 395999197307865131396641, 355606838202854450265484201, 319334544706965988473273415801, 286762065540017254794549261905041
Offset: 1

Views

Author

Colin Barker, Jan 03 2015

Keywords

Examples

			841 is in the sequence because it is the 16th centered heptagonal number and the 15th centered octagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^2-58*x+1)/((x-1)*(x^2-898*x+1)) + O(x^100))

Formula

a(n) = 899*a(n-1)-899*a(n-2)+a(n-3).
G.f.: -x*(x^2-58*x+1) / ((x-1)*(x^2-898*x+1)).
From Peter Bala, Apr 15 2025; (Start)
a(n) = (1/64)*(-4 + sqrt(14))^2*(15 + 4*sqrt(14) + (449 + 120*sqrt(14))^n)^2 *(449 + 120*sqrt(14))^(-n).
a(-n) = a(n+1).
a(n) = (1/16) * (1 - T(2*n+1, -15)), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. Cf. A001110.
a(n) = A157877(n)^2 = 1 + 7*A157879(n).
a(2) divides a(3*n+2); a(3) divides a(5*n+3); a(4) divides a(7*n+4); a(5) divides a(9*n+5). In general, a(k) divides a((2*k-1)*n + k). (End)

A113449 Sum of the square root of n-th square triangular number and n-th Pell (or lambda) number (A000129).

Original entry on oeis.org

2, 8, 40, 216, 1218, 7000, 40560, 235824, 1373090, 7999592, 46616920, 271683720, 1583441442, 9228858808, 53789455200, 313507253856, 1827252574658, 10650004589000, 62072766255880, 361786571934264, 2108646614622210
Offset: 1

Views

Author

K. B. Subramaniam (subramaniam_kb05(AT)yahoo.co.in), Nov 02 2005

Keywords

Crossrefs

Programs

  • Mathematica
    Simplify[Table[Sqrt[((17 + 12*Sqrt[2])^n + (17 - 12*Sqrt[2])^n - 2)/32] + ((1 + Sqrt[2])^n - (1 - Sqrt[2])^n)/(2*Sqrt[2]), {n, 1, 25}]] (* Stefan Steinerberger, Jun 17 2007 *)
    Table[Sqrt[(LucasL[4*n, 2] - 2)/32] + Fibonacci[n, 2], {n,1,50}] (* G. C. Greubel, Mar 11 2017 *)
  • PARI
    x='x+O('x^50); Vec((2*x)*(1-4*x) / ((1-2*x-x^2)*(1-6*x+x^2))) \\ G. C. Greubel, Mar 11 2017

Formula

a(n) = sqrt(((17 + 12*sqrt(2))^n + (17 - 12*sqrt(2))^n - 2)/32) + ((1 + sqrt(2))^n - (1 - sqrt(2))^n)/(2*sqrt(2)). - Stefan Steinerberger, Jun 17 2007
From G. C. Greubel, Mar 11 2017: (Start)
a(n) = sqrt((Q_{4*n} - 2)/32) + P_{n}, where P_{n} and the Pell numbers and Q_{n} are the Pell-Lucas numbers.
a(n) = 8*a(n-1) - 12*a(n-2) - 4*a(n-3) + a(n-4).
G.f.: (2*x)*(1-4*x) / ((1-2*x-x^2)*(1-6*x+x^2)). (End)

Extensions

More terms from Stefan Steinerberger, Jun 17 2007

A114620 2*A084158 (twice Pell triangles).

Original entry on oeis.org

0, 2, 10, 60, 348, 2030, 11830, 68952, 401880, 2342330, 13652098, 79570260, 463769460, 2703046502, 15754509550, 91824010800, 535189555248, 3119313320690, 18180690368890, 105964828892652, 617608282987020
Offset: 0

Views

Author

Creighton Dement, Feb 17 2006

Keywords

Comments

Cross-referenced sequences A116484, A001109, A108475, A090390 are also generated by A*B given in the following FAMP code.
Floretion Algebra Multiplication Program, FAMP Code: 1jesleftseq[A*B] with A = - .5'i + .5'j - .5i' + .5j' + 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj' and B = - .5'j + .5'k - .5j' + .5k' - 'ii' - .5'ij' - .5'ik' - .5'ji' - .5'ki'
Related to the reciprocals of the differences between successive convergents of the continued fraction of sqrt(2) (i.e., 1, 2, -10, 60, -348, 2030, -11830, 68952, ...). 1/1 + 1/2 - 1/10 + 1/60 - 1/348 + 1/2030 + ... = sqrt(2). 2, 10, 60, ... are products of the denominators of two successive convergents of sqrt(2) (e.g., 11830 = 70*169, cf. A000129 (Pell numbers)). - Gerald McGarvey, Feb 28 2006
a(n) is half of the even leg (b(n)) of the ordered Pythagorean triple (x(n), y(n)=x(n)+1, z(n)). In fact b(n) = x(n) + (1-(-1)^n)/2: x(0)=0, b(0)=0, a(0)=0; x(1)=3, b(1)=4, a(1)=2. - George F. Johnson, Aug 13 2012
Given a square shape composed of A001110(n+1) elements, thinking of it graphically as a sum of layers, each layer having an odd number of elements (all layers together being a sum of consecutive odd numbers), a(n) is the number of last layers that we have to subtract from the square to get a square of squares that is made of A002965(2*(n+1))^4 elements. - Daniel Poveda Parrilla, Jul 17 2016
Also numbers m such that 8*m^2 - 4*m + 1 or 8*m^2 + 4*m + 1 is a perfect square (square roots are then A001653). - Lamine Ngom, Jul 25 2023

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[n, 2] Fibonacci[n + 1, 2], {n, 0, 20}] (* or *)
    LinearRecurrence[{5, 5, -1}, {0, 2, 10}, 21] (* or *)
    CoefficientList[Series[2 x/((x + 1) (x^2 - 6 x + 1)), {x, 0, 20}], x] (* Michael De Vlieger, Jul 17 2016 *)

Formula

G.f.: 2*x/((x+1)*(x^2-6*x+1)).
From George F. Johnson, Aug 13 2012: (Start)
a(n) = ((sqrt(2) + 1)^(2*n+1) - (sqrt(2) - 1)^(2*n+1) - 2*(-1)^n)/8. - corrected by Ilya Gutkovskiy, Jul 18 2016
4*a(n)*(2*a(n) + (-1)^n) + 1 = A000129(2*n+1)^2 is a perfect square.
For n >= 0, a(n+1) = 3*a(n) + (-1)^n + sqrt(4*a(n)*(2*a(n) + (-1)^n) + 1).
For n > 0, a(n-1) = 3*a(n) + (-1)^n - sqrt(4*a(n)*(2*a(n) + (-1)^n) + 1).
a(n+1) = 6*a(n) - a(n-1) + 2*(-1)^n.
a(n+1) = 5*a(n) + 5*a(n-1) - a(n-2).
For n > 0, a(n+1)*a(n-1) = a(n)*(a(n) + 2*(-1)^n).
a(n) = A046729(n)/2. (End)
a(n) = A000129(n)*A000129(n+1). - Philippe Deléham, Apr 10 2013
a(n) = A002965(2*(n+1))*(A002965(2*(n+1)+1) - A002965(2*(n+1))). - Daniel Poveda Parrilla, Jul 17 2016

A164080 Perfect squares one less than a triangular number.

Original entry on oeis.org

0, 9, 324, 11025, 374544, 12723489, 432224100, 14682895929, 498786237504, 16944049179225, 575598885856164, 19553418069930369, 664240615491776400, 22564627508650467249, 766533094678624110084, 26039560591564569275625
Offset: 1

Views

Author

Tanya Khovanova & Alexey Radul, Aug 09 2009

Keywords

Examples

			324=18^2 is a perfect square and 325=A000217(25) is a triangular number. Therefore 324 is in this sequence.
		

Programs

  • Mathematica
    LinearRecurrence[{35,-35,1},{0,9,324},20] (* Harvey P. Dale, Oct 24 2023 *)

Formula

a(n) = A164055(n)-1.
a(n) = A072221(n)*(A072221(n)+1)/2 - 1.
a(n) = 35*a(n-1) -35*a(n-2) +a(n-3) = 9*A001110(n-1). G.f.: 9*x^2*(1+x)/((1-x)*(x^2-34*x+1)). [R. J. Mathar, Oct 21 2009]

Extensions

Comments turned into formulas. - R. J. Mathar, Oct 21 2009

A185097 a(1)=1; thereafter a(n+1) = T(8*a(n)), where T(i)=i*(i+1)/2 is the i-th triangular number.

Original entry on oeis.org

1, 36, 41616, 55420693056, 98286503002057414584576, 309127573515950117423442905473334441338685531136
Offset: 1

Views

Author

N. J. A. Sloane, Feb 18 2011

Keywords

Comments

All terms are square and triangular; a subsequence of A001110.

References

  • C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 4.

Crossrefs

Programs

  • Maple
    T:=n->n*(n+1)/2; t1:=[1]; for n from 1 to 7 do t1:= [op(t1), T(8*t1[nops(t1)])]; od: t1;
  • Mathematica
    NestList[(8#(8#+1))/2&,1,7] (* Harvey P. Dale, Jan 20 2015 *)

Formula

a(n) = (1/8)*sinh(2^(n-2)*arccosh(17))^2. [Alexander R. Povolotsky, Aug 14 2011]
a(n+2) = 4*a(n+1)*(a(n+1)/(2*a(n))-1)^2, a(1)=1, a(2)=36. [Alexander R. Povolotsky, Aug 15 2011]
a(n) = A001110(2^(n-1)). - Ivan N. Ianakiev, Mar 11 2014

A229134 Square numbers that are the sum of two non-consecutive triangular numbers.

Original entry on oeis.org

16, 36, 81, 121, 196, 225, 256, 289, 361, 441, 484, 529, 576, 625, 676, 841, 900, 961, 1024, 1156, 1225, 1296, 1444, 1521, 1600, 1681, 1849, 1936, 2116, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3136, 3249, 3481, 3721, 4096, 4356, 4624, 4761, 4900, 5041, 5184
Offset: 1

Views

Author

Jon Perry, Sep 15 2013

Keywords

Comments

It is well known that tri(n) + tri(n+1) is always a square.
Sequence includes all terms of A001110 > 1. A number m is a term if and only if there exists k > 1 such that m >= tri(k) and 4m - k^2 + 1 is a perfect square. - Chai Wah Wu, Feb 25 2016

Examples

			16 = 15+1, 81 = 78+3 = 66+15.
		

Crossrefs

Programs

  • JavaScript
    function isSquare(n) {
    if (Math.sqrt(n)==Math.floor(Math.sqrt(n))) return true; else return false;
    }
    a=new Array();
    ac=0;
    for (i=0;i<100;i++)
    for (j=i+2;j<100;j++)
    if (isSquare(i*(i+1)/2+j*(j+1)/2)) a[ac++]=i*(i+1)/2+j*(j+1)/2;
    a.sort(function(a,b) {return a-b;});
    a=trimArray(a);
    function trimArray(arr) {
    var j,c=new Array(),i;
    for (j=0;j
    				
  • Mathematica
    nn = 10000; mx = Floor[Sqrt[1 + 8 nn]/2]; tri = Table[n (n + 1)/2, {n, mx}]; t = {}; Do[s = tri[[i]] + tri[[j]]; If[s <= nn && IntegerQ[Sqrt[s]], AppendTo[t, s]], {i, mx - 2}, {j, i + 2, mx}]; t = Union[t] (* T. D. Noe, Sep 17 2013 *)
  • Python
    from gmpy2 import is_square
    A229134_list = []
    for i in range(10**3):
        m, m2, j, k = 2, 4, 4*i**2+1, 2*i**2
        while k >= m2 + m:
            if is_square(j-m2):
                A229134_list.append(i**2)
                break
            m2 += 2*m+1
            m += 1 # Chai Wah Wu, Feb 25 2016

Extensions

Corrected and extended by T. D. Noe, Sep 17 2013
a(2) = 36 reinserted by Chai Wah Wu, Feb 27 2016

A238456 Triangular numbers t such that t+x+y is a square, where x and y are the two squares nearest to t.

Original entry on oeis.org

0, 2211, 5151, 1107816, 20959575, 4237107540, 1564279847151, 61066162885575, 2533192954461975, 2774988107938203, 90728963274006291, 18765679728507154152720
Offset: 1

Views

Author

Alex Ratushnyak, Feb 26 2014

Keywords

Comments

For triangular numbers t such that t*x*y is a square, see A001110 (t is both triangular and square).
a(13) > 5*10^22. - Giovanni Resta, Mar 02 2014

Examples

			The two squares nearest to triangular(101)=5151 are 71^2 and 72^2. Because 5151 + 71^2 + 72^2 = 15376 is a perfect square, 5151 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    sqQ[n_]:=Module[{c=Floor[Sqrt[n]]-1,x},x=Total[Take[SortBy[ Range[ c,c+3]^2, Abs[#-n]&],2]];IntegerQ[Sqrt[n+x]]]; Select[ Accumulate[ Range[ 0, 5000000]], sqQ] (* This will generate the first 7 terms of the sequence.  To generate more, increase the second constant within the Range function, but computations will take a long time. *) (* Harvey P. Dale, May 12 2014 *)
  • Python
    def isqrt(a):
        sr = 1 << (int.bit_length(int(a)) >> 1)
        while a < sr*sr:  sr>>=1
        b = sr>>1
        while b:
            s = sr + b
            if a >= s*s:  sr = s
            b>>=1
        return sr
    t = i = 0
    while 1:
        t += i
        i += 1
        s = isqrt(t)
        if s*s==t:  s-=1
        txy = t + 2*s*(s+1) + 1   # t + s^2 + (s+1)^2
        r = isqrt(txy)
        if r*r==txy:  print(str(t), end=',')

Extensions

a(12) from Giovanni Resta, Mar 02 2014

A275543 A081585 and A069129 interleaved.

Original entry on oeis.org

1, 1, 9, 17, 33, 49, 73, 97, 129, 161, 201, 241, 289, 337, 393, 449, 513, 577, 649, 721, 801, 881, 969, 1057, 1153, 1249, 1353, 1457, 1569, 1681, 1801, 1921, 2049, 2177, 2313, 2449, 2593, 2737, 2889, 3041, 3201, 3361, 3529, 3697, 3873, 4049, 4233, 4417, 4609
Offset: 0

Views

Author

Daniel Poveda Parrilla, Aug 01 2016

Keywords

Comments

a(A000129(n)) is a square.
(n^2)*a(n) = A275496(n) which is a triangular number.
(A000129(n)^2)*a(A000129(n)) = A275496(A000129(n)) = A001110(n) which is a square triangular number.
a(2n+1)/a(2n) is convergent to 1.

Examples

			a(1) = A275496(1) = 1.
a(5) = A275496(5)/25 = 1225/25 = 49.
a(7) = A275496(7)/49 = 4753/49 = 97.
a(12) = A275496(12)/144 = 41616/144 = 289.
		

Crossrefs

Cf. A081585(n) = a(2n), A069129(n) = a(2n + 1).

Programs

Formula

a(0) = 1; a(n) = A275496(n)/(n^2) for n > 0.
From Colin Barker, Aug 01 2016: (Start)
a(n) = (2*n^2 + (-1)^n).
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 3.
G.f.: (1 -x +7*x^2 +x^3) / ((1 - x)^3*(1 + x)).
(End)
From Daniel Poveda Parrilla, Aug 18 2016: (Start)
a(2n) = A077221(2n) + 1.
a(2n + 1) = A077221(2n + 1). (End)
Sum_{n>=0} 1/a(n) = (1 + (tan(c) + coth(c))*c)/2, where c = Pi/(2*sqrt(2)) is A093954. - Amiram Eldar, Aug 21 2022

A328791 Triangular numbers of the form k^2 + 3.

Original entry on oeis.org

3, 28, 903, 30628, 1040403, 35343028, 1200622503, 40785822028, 1385517326403, 47066803275628, 1598885794044903, 54315050194251028, 1845112820810490003, 62679520857362409028, 2129258596329511416903, 72332112754346025765628, 2457162575051435364614403
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 27 2019

Keywords

Comments

There exist triangular numbers of the form k^2 + j for j=0 (A001110), j=1 (A164055), j=2 (A214838), and j=3 (this sequence), but not for j=4,7,8,13,16,18,... (A328792).

Crossrefs

Intersection of A000217 and A117950.
Cf. A276598 (the k's).

Programs

Formula

a(1) = 3, a(2) = 28; for n > 2, a(n) = 34*a(n-1) - a(n-2) - 46.

A328792 Numbers that are not the difference between any triangular number and the largest square that does not exceed it.

Original entry on oeis.org

4, 7, 8, 13, 16, 18, 22, 23, 25, 26, 31, 33, 34, 37, 38, 40, 43, 47, 48, 49, 52, 58, 59, 60, 61, 63, 64, 67, 68, 70, 73, 76, 79, 81, 83, 85, 86, 88, 92, 93, 94, 97, 98, 99, 102, 103, 106, 108, 112, 113, 114, 115, 118, 121, 123, 124, 125, 130, 133, 134, 138
Offset: 1

Views

Author

Jon E. Schoenfield, Oct 27 2019

Keywords

Examples

			For any triangular number t, let f(t) = t - floor(sqrt(t))^2.
0 is not a term: for each term t in A001110, f(t) = 0.
1 is not a term: for each term t > 1 in A164055, f(t) = 1.
2 is not a term: for each term t in A214838, f(t) = 2.
3 is not a term: for each term t > 3 in A328791, f(t) = 3.
4 is a term, however: there exists no triangular number t such that f(t) = 4.
		

Crossrefs

The complement of A230044.
Previous Showing 51-60 of 85 results. Next