cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 424 results. Next

A179930 a(n) = gcd(n, A001157(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 10, 1, 6, 1, 2, 5, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 14, 1, 10, 1, 1, 1, 2, 5, 3, 1, 2, 1, 10, 1, 2, 1, 2, 1, 2, 1, 2, 1, 5, 1, 2, 1, 2, 1, 2, 1, 2, 1, 60, 1, 2, 7, 1, 65, 2, 1, 2, 1, 10, 1, 1, 1, 2, 15, 2, 1, 2, 1, 2, 1, 2, 1, 84, 5, 2, 1, 2, 1, 10, 1, 2, 1, 2, 1, 6
Offset: 1

Views

Author

N. J. A. Sloane, Jul 09 2011, following a suggestion from R. J. Mathar

Keywords

Crossrefs

Programs

Formula

A006530(a(n)) = A082063(n). - Reinhard Zumkeller, Jul 10 2011
A020639(a(n)) = A082069(n). - Antti Karttunen, Nov 03 2017

A318250 a(n) = (n - 1)! * sigma_2(n), where sigma_2(n) = sum of squares of divisors of n (A001157).

Original entry on oeis.org

1, 5, 20, 126, 624, 6000, 36000, 428400, 3669120, 47174400, 442713600, 8382528000, 81430272000, 1556755200000, 22666355712000, 445916959488000, 6067609067520000, 161837779783680000, 2317659281473536000, 66418224823222272000, 1216451004088320000000, 31165474724742758400000
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 22 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(n - 1)! DivisorSigma[2, n], {n, 1, 22}]
    nmax = 22; Rest[CoefficientList[Series[Sum[x^k/(k (1 - x^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!]
    nmax = 22; Rest[CoefficientList[Series[-Log[Product[(1 - x^k)^k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!]
  • PARI
    a(n) = (n-1)!*sigma(n,2); \\ Michel Marcus, Aug 22 2018

Formula

E.g.f.: Sum_{k>=1} x^k/(k*(1 - x^k)^2).
E.g.f.: -log(Product_{k>=1} (1 - x^k)^k).
E.g.f.: A(x) = log(B(x)), where B(x) = o.g.f. of A000219.
a(p^k) = (p^(2*k+2) - 1)*(p^k - 1)!/(p^2 - 1), where p is a prime.

A330495 a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling1(n,k) * (k-1)! * sigma_2(k), where sigma_2 = A001157.

Original entry on oeis.org

1, 6, 37, 307, 2858, 32060, 405830, 5777354, 91400200, 1593023040, 30251766840, 622016655816, 13777150847952, 327040289212320, 8280040187137200, 222696435041359824, 6341359225470493440, 190609840724078576256, 6031297367477133540480, 200389374367707186619776
Offset: 1

Views

Author

Vaclav Kotesovec, Dec 16 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k) * StirlingS1[n, k] * (k-1)! * DivisorSigma[2, k], {k, 1, n}], {n, 1, 20}]
    nmax = 20; Rest[CoefficientList[Series[Sum[Log[1/(1 - x)]^k/(k*(1 - Log[1/(1 - x)]^k)^2), {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!]
  • PARI
    a(n) = sum(k=1, n, (-1)^(n-k)*stirling(n, k, 1)*(k-1)!*sigma(k, 2)); \\ Michel Marcus, Dec 16 2019

Formula

E.g.f.: Sum_{k>=1} log(1/(1 - x))^k / (k * (1 - log(1/(1 - x))^k)^2).
a(n) ~ n! * zeta(3) * n * exp(n) / (exp(1) - 1)^(n+2).

A335763 Decimal expansion of Sum_{k>=1} sigma_2(k)/2^k where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

7, 0, 9, 9, 2, 8, 5, 1, 7, 8, 8, 9, 0, 9, 0, 7, 1, 1, 4, 0, 3, 3, 1, 2, 5, 0, 2, 2, 1, 6, 4, 7, 5, 3, 6, 6, 3, 1, 5, 7, 6, 0, 8, 8, 3, 3, 2, 1, 1, 8, 9, 5, 9, 7, 8, 8, 3, 9, 2, 3, 7, 7, 4, 2, 8, 8, 9, 1, 2, 8, 8, 9, 1, 1, 2, 2, 6, 4, 5, 8, 7, 1, 7, 3, 5, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			7.099285178890907114033125022164753663157608833211895...
		

Crossrefs

Programs

  • Maple
    evalf(add( (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3, n = 1..20 ), 100); # Peter Bala, Jan 22 2021
  • Mathematica
    RealDigits[Sum[n^2/(2^n - 1), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} k^2/(2^k - 1).
Faster converging series: Sum_{n >= 1} (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3. - Peter Bala, Jan 19 2021

A080401 Numbers k such that the sum of the squares of the divisors of k (A001157(k)) is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 22, 23, 25, 29, 31, 32, 37, 38, 40, 44, 47, 48, 49, 50, 52, 53, 58, 59, 61, 62, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 83, 88, 89, 92, 97, 98, 99, 101, 103, 109, 113, 116, 117, 118, 121, 122, 124, 127, 128, 131, 137
Offset: 1

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Comments

If m*k is in the sequence with m and k coprime, then m and k must be in the sequence. - Robert Israel, Mar 29 2019

Crossrefs

Cf. A001157, A005117, A065300, A080402 (complement).

Programs

  • Maple
    select(n -> numtheory:-issqrfree(numtheory:-sigma[2](n)), [$1..1000]); # Robert Israel, Mar 29 2019
  • Mathematica
    Do[s=MoebiusMu[DivisorSigma[2, n]]; If[ !Equal[s, 0], Print[n]], {n, 1, 1000}]
    Select[Range[200],SquareFreeQ[DivisorSigma[2,#]]&] (* Harvey P. Dale, Jun 17 2014 *)
  • PARI
    isok(n) = issquarefree(sigma(n, 2)); \\ Michel Marcus, Mar 29 2019

Formula

abs(mu(sigma_2(a(n)))) = 1.

A080402 Numbers k such that the sum of the squares of the divisors of k (A001157(k)) is not squarefree.

Original entry on oeis.org

6, 7, 14, 15, 21, 24, 26, 27, 28, 30, 33, 34, 35, 36, 39, 41, 42, 43, 45, 46, 51, 54, 55, 56, 57, 60, 63, 65, 66, 69, 70, 74, 77, 78, 81, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 96, 100, 102, 104, 105, 106, 107, 108, 110, 111, 112, 114, 115, 119, 120, 123, 125, 126, 129
Offset: 1

Views

Author

Labos Elemer, Mar 19 2003

Keywords

Crossrefs

Cf. A001157, A005117, A013929, A065300, A080401 (complement).

Programs

  • Mathematica
    Do[s=MoebiusMu[DivisorSigma[2, n]]; If[Equal[s, 0], Print[n]], {n, 1, 1000}]
    Select[Range[130],!SquareFreeQ[DivisorSigma[2,#]]&] (* Harvey P. Dale, Oct 10 2011 *)
  • PARI
    is(k) = !issquarefree(sigma(k, 2)); \\ Amiram Eldar, Aug 12 2024

Formula

mu(sigma_2(a(n))) = 0.

A099979 Bisection of A001157: sigma_2(2n).

Original entry on oeis.org

5, 21, 50, 85, 130, 210, 250, 341, 455, 546, 610, 850, 850, 1050, 1300, 1365, 1450, 1911, 1810, 2210, 2500, 2562, 2650, 3410, 3255, 3570, 4100, 4250, 4210, 5460, 4810, 5461, 6100, 6090, 6500, 7735, 6850, 7602, 8500, 8866, 8410, 10500, 9250, 10370
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2004

Keywords

Examples

			a(1) = sigma_2(2*1) = 1 + 2^2 = 5.
a(2) = sigma_2(2*2) = 1 + 2^2 + 4^2 = 21.
		

Crossrefs

Sigma_2(k*n): A001157 (k=1), this sequence (k=2), A283237 (k=3).

Programs

  • Maple
    with(numtheory): seq(sigma[2](2*n),n=1..50); # C. Ronaldo
  • Mathematica
    Table[DivisorSigma[2,2n],{n,1,47}] (* Indranil Ghosh, Mar 03 2017 *)
  • PARI
    a(n) = sigma(2*n,2); \\ Indranil Ghosh, Mar 03 2017

Formula

a(n) = A001157(2*n) = sigma_2(2*n).
Sum_{k=1..n} a(k) ~ 3 * zeta(3) * n^3 / 2. - Vaclav Kotesovec, Aug 07 2022

Extensions

More terms from C. Ronaldo (aga_new_ac(AT)hotmail.com), Jan 18 2005
Offset changed to 1 by Seiichi Manyama, Mar 03 2017
Examples added and name edited by M. F. Hasler, Mar 06 2017

A131905 Integers x such that sigma_2(k)=sigma_2(x) for some 0A001157=sigma_2 is the sum of squares of divisors.

Original entry on oeis.org

7, 26, 35, 47, 77, 91, 119, 130, 133, 141, 157, 161, 175, 182, 203, 215, 217, 249, 259, 282, 286, 287, 301, 329, 371, 385, 413, 423, 427, 434, 442, 455, 469, 471, 494, 497, 511, 517, 553, 581, 595, 598, 611, 623, 650, 651, 665, 679, 707, 721, 749, 754, 763, 785
Offset: 1

Views

Author

Peter Pein (petsie(AT)dordos.net), Jul 26 2007

Keywords

Examples

			This sequence contains 35, because sigma_2(35) = 1^2+5^2+7^2+35^2 = 1+25+49+1225 = 1300, and the sum of the squares of the divisors of 30<35 is sigma_2(30) = 1+4+9+25+36+100+225+900 = 1300.
		

Crossrefs

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    count:= 0: Res:= NULL:
    for n from 1 while count < N do
      v:= numtheory:-sigma[2](n);
      if assigned(V[v]) then count:= count+1; Res:= Res, n;
      else V[v]:= n
      fi
    od:
    Res; # Robert Israel, Mar 30 2018
  • Mathematica
    Clear[tmp]; First@Transpose[ Function[n, (If[Head[ #1] === tmp, #1 = n; Unevaluated[Sequence[]], {n, #1}] & )[tmp[DivisorSigma[2, n]]]] /@ Range[500]]
    Module[{nn=800,ds2,c},ds2=DivisorSigma[2,Range[nn]];Table[c=TakeDrop[Take[ds2,n],-1];If[ MemberQ[c[[2]],c[[1,1]]],n,Nothing],{n,nn}]] (* Harvey P. Dale, May 22 2024 *)
  • PARI
    isok(n) = {sn = sigma(n,2); for (k=1, n-1, if (sigma(k,2) == sn, return (1)););} \\ Michel Marcus, Apr 03 2015

Formula

a(n) = n-th element of {x: there exists some k with 0A001157=sigma_2 is the sum of squares of divisors.

Extensions

a(37)-a(54) from Michel Marcus, Apr 03 2015
Edited by Danny Rorabaugh, Apr 03 2015

A169635 Integers m such that sigma_2(m) = sigma_2(m + 2) where sigma_2(m) is the sum of squares of divisors of m (A001157).

Original entry on oeis.org

24, 215, 280, 1079, 947519, 1362239, 2230271, 14939999, 19720007, 32509439, 45581759, 45841247, 49436927, 78436511, 82842911, 101014631, 166828031, 225622151, 225757799, 250999559, 377129087, 554998751, 619606439, 846765431, 1204092287, 1302170687, 1710035711
Offset: 1

Views

Author

Michel Lagneau, Apr 04 2010

Keywords

Comments

The equation sigma_2(m) = sigma_2(m + k) has infinitely many solutions where k >= 2 and k is even (J.-M. De Koninck).
From Amiram Eldar, Apr 19 2024: (Start)
De Koninck's proof is based on the assumption of Schinzel's hypothesis H. If q, r = q + 2, s = q^2 + q + 1, and p = q^2 + 3*q + 3 are all primes, then p*q is a term (the values of q+1 are the terms of A268043).
The equation sigma_2(m) = sigma_2(m + 1) has only one solution: m = 6. (End)

Examples

			For m=24, sigma_2(24) = sigma_2(26) = 850.
		

References

  • Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 118, entry 1079.
  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B13, pp. 103-104.

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 500000000 do:liste:= divisors(n) : s2 :=sum(liste[i]^2, i=1..nops(liste)):liste:=divisors(n+2):s3:=sum(liste[i]^2, i=1..nops(liste)):if s2 = s3 then print(n):else fi:od:
  • Mathematica
    Select[Range[10^9], DivisorSigma[2,#] == DivisorSigma[2,#+2]&]
  • PARI
    is(n) = sigma(n, 2) == sigma(n + 2, 2); \\ Amiram Eldar, Apr 19 2024
    
  • PARI
    lista(mmax) = {my(s1 = sigma(1, 2), s2 = sigma(2, 2), s3, s4); forstep(m = 3, mmax, 2, s3 = sigma(m, 2); s4 = sigma(m+1, 2); if(s1 == s3, print1(m - 2, ", ")); if(s2 == s4, print1(m - 1, ", ")); s1 = s3; s2 = s4);} \\ Amiram Eldar, Apr 19 2024

Extensions

a(25)-a(27) from Donovan Johnson, Apr 14 2013

A364269 a(n) = Sum_{k=1..n} k^3*sigma_2(k), where sigma_2 is A001157.

Original entry on oeis.org

1, 41, 311, 1655, 4905, 15705, 32855, 76375, 142714, 272714, 435096, 797976, 1171466, 1857466, 2734966, 4131702, 5556472, 8210032, 10692990, 15060990, 19691490, 26186770, 32635280, 44385680, 54557555, 69497155, 85637215, 108686815, 129222353, 164322353
Offset: 1

Views

Author

Seiichi Manyama, Oct 20 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Accumulate[Table[n^3*DivisorSigma[2, n], {n, 1, 30}]] (* Amiram Eldar, Oct 20 2023 *)
  • PARI
    f(n, m) = (subst(bernpol(m+1, x), x, n+1)-subst(bernpol(m+1, x), x, 0))/(m+1);
    a(n, s=3, t=2) = sum(k=1, n, k^(s+t)*f(n\k, s));
    
  • Python
    def A364269(n): return sum(k*(k**2*(m:=n//k)*(m+1)>>1)**2 for k in range(1,n+1)) # Chai Wah Wu, Oct 20 2023
    
  • Python
    from math import isqrt
    def A364269(n): return ((((s:=isqrt(n))*(s+1))**4*(1-s*(s+1<<1))>>2) + sum(((q:=n//k)*(q+1))**2*k**3*(3*k**2+(q*(q+1<<1)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{k=1..n} k^5 * A000537(floor(n/k)).
a(n) ~ (zeta(3)/6) * n^6. - Amiram Eldar, Oct 20 2023
Previous Showing 11-20 of 424 results. Next