cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 56 results. Next

A326403 Numbers k such that iphi(k) = iphi(k+1), where iphi(k) is an infinitary analog to the Euler totient function (A091732).

Original entry on oeis.org

1, 20, 35, 143, 194, 208, 740, 1220, 1299, 1419, 1803, 1892, 3705, 3716, 3843, 5186, 5635, 7868, 10659, 13634, 13905, 17948, 18507, 18914, 18980, 21007, 25388, 25545, 30380, 31599, 32304, 34595, 37820, 47067, 70394, 73059, 78064, 87856, 94874, 105908, 116963
Offset: 1

Views

Author

Amiram Eldar, Sep 14 2019

Keywords

Examples

			20 is in the sequence since iphi(20) = iphi(21) = 12.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); a[1] = 1; a[n] := Times @@ (Flatten @(f @@@ FactorInteger[n]) - 1); a1 = 1; s = {}; Do[a2 = a[n]; If[a1 == a2, AppendTo[s, n - 1]]; a1 = a2, {n, 2, 10^5}]; s

A057000 a(n) = phi(n+1) - phi(n).

Original entry on oeis.org

0, 1, 0, 2, -2, 4, -2, 2, -2, 6, -6, 8, -6, 2, 0, 8, -10, 12, -10, 4, -2, 12, -14, 12, -8, 6, -6, 16, -20, 22, -14, 4, -4, 8, -12, 24, -18, 6, -8, 24, -28, 30, -22, 4, -2, 24, -30, 26, -22, 12, -8, 28, -34, 22, -16, 12, -8, 30, -42, 44, -30, 6, -4, 16, -28, 46, -34, 12, -20, 46, -46, 48, -36, 4
Offset: 1

Views

Author

N. J. A. Sloane, Sep 09 2000

Keywords

Crossrefs

Programs

  • Magma
    [(EulerPhi(n+1) - EulerPhi(n)): n in [1..100]]; // Vincenzo Librandi, Sep 30 2013
    
  • Maple
    A057000 := proc(n)
        numtheory[phi](n+1)-numtheory[phi](n) ;
    end proc:
    seq(A057000(n),n=1..40) ; # R. J. Mathar, May 10 2023
  • Mathematica
    Table[EulerPhi[n + 1] - EulerPhi[n], {n, 100}] (* Vincenzo Librandi, Sep 30 2013 *)
  • PARI
    a(n) = eulerphi(n+1) - eulerphi(n); \\ Michel Marcus, Jan 29 2017

Formula

G.f.: -1 + (1 - x)*Sum_{k>=1} mu(k)*x^(k-1)/(1 - x^k)^2. - Ilya Gutkovskiy, Jan 29 2017

A001837 Numbers k such that phi(2k+1) < phi(2k).

Original entry on oeis.org

157, 262, 367, 412, 472, 487, 577, 682, 787, 877, 892, 907, 997, 1072, 1207, 1237, 1312, 1402, 1522, 1567, 1627, 1657, 1732, 1852, 1942, 2047, 2062, 2152, 2194, 2257, 2362, 2437, 2467, 2557, 2572, 2677, 2722, 2782
Offset: 1

Views

Author

Keywords

Comments

Greg Martin (gerg(AT)math.toronto.edu) writes: I recently calculated the smallest solution of phi(30k+1) < phi(30k) (see the Martin link); it has 1116 digits.

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 157, p. 51, Ellipses, Paris 2008.
  • Jeffrey Shallit, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010.

Programs

  • Maple
    with(numtheory,phi); f := proc(n) if phi(2*n+1) < phi(2*n) then RETURN(n) fi end;
  • Mathematica
    Select[ Range[4000], EulerPhi[2# + 1] < EulerPhi[2# ] & ]
  • PARI
    isok(n) = eulerphi(2*n+1) < eulerphi(2*n); \\ Michel Marcus, Oct 03 2017

A003275 Values of phi(k) when phi(k) = phi(k+1).

Original entry on oeis.org

1, 2, 8, 48, 80, 96, 128, 240, 288, 480, 1008, 1200, 1296, 1440, 1728, 2592, 2592, 4800, 5600, 6480, 8640, 11040, 12480, 14976, 19008, 19200, 22464, 24320, 24576, 21120, 28416, 27840, 25920, 32000, 32768, 36000, 47520, 52992, 60480, 59904, 79200, 89280, 96768
Offset: 1

Views

Author

Keywords

Comments

In other words, consider k = 1,2,3,4,..., and if phi(k) = phi(k+1), add phi(k) to the sequence.

References

  • Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B36, pp. 138-142.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a003275 = a000010 . fromIntegral . a001274
    -- Reinhard Zumkeller, May 20 2014
    
  • Mathematica
    Cases[Split[Table[EulerPhi[k],{k,1,50000}]],{,}][[1;;27,1]] (* Jean-François Alcover, Mar 20 2011 *)
    #[[1]]&/@Select[Partition[EulerPhi[Range[80000]],2,1],#[[1]]==#[[2]]&] (* Harvey P. Dale, Oct 03 2012 *)
    SequenceCases[EulerPhi[Range[200000]],{x_,x_}][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 05 2019 *)
  • PARI
    lista(lim) = my(p1 = 1, p2); for(k = 2, lim, p2 = eulerphi(k); if(p1 == p2, print1(p1, ", ")); p1 = p2); \\ Amiram Eldar, Nov 27 2024

Formula

a(n) = A000010(A001274(n)). - Reinhard Zumkeller, May 20 2014

A067143 Numbers n such that phi(n+1) = 3*phi(n).

Original entry on oeis.org

6, 12, 18, 36, 72, 90, 96, 108, 162, 192, 432, 486, 576, 702, 768, 792, 924, 1152, 1296, 1458, 2592, 2916, 3456, 3888, 4698, 5550, 6696, 7998, 8700, 10368, 10590, 11802, 12288, 16470, 17496, 18432, 33250, 39366, 52488, 56790, 79248, 124356
Offset: 1

Views

Author

Benoit Cloitre, Feb 19 2002

Keywords

Crossrefs

Programs

Extensions

More terms from Dean Hickerson, Feb 20 2002

A172314 Numbers k such that phi(k+1) = 4*phi(k).

Original entry on oeis.org

1260, 13650, 17556, 18720, 24510, 42120, 113610, 244530, 266070, 712080, 749910, 795690, 992250, 1080720, 1286730, 1458270, 1849470, 2271060, 2457690, 3295380, 3370770, 3414840, 3714750, 4061970, 4736490, 5314050, 5827080, 6566910, 6935082, 7303980, 7864080
Offset: 1

Views

Author

Michel Lagneau, Jan 31 2010

Keywords

Examples

			phi(1260) = 288. phi(1261) = 1152. 4*phi(1260) = phi(1261).
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 51, p. 19, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. B36.

Crossrefs

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(n+1) eq 4*EulerPhi(n)]; // Vincenzo Librandi, Jan 27 2016
  • Maple
    with(numtheory): for n from 1 to 4000000 do; if 4*phi(n) = phi(n+1) then print(n); else fi ; od;
  • Mathematica
    #[[1,1]]&/@Select[Partition[Table[{n,EulerPhi[n]},{n,4000000}],2,1], 4#[[1,2]]==#[[2,2]]&] (* Harvey P. Dale, Oct 11 2011 *)
    Select[Range@1000000, EulerPhi@# 4 == EulerPhi[# + 1] &] (* Vincenzo Librandi, Jan 27 2016 *)

Extensions

References separated by R. J. Mathar, Feb 19 2010

A266276 a(n) is the smallest number k such that phi(k) = n*phi(k-1).

Original entry on oeis.org

2, 3, 7, 1261, 11242771
Offset: 1

Views

Author

Jaroslav Krizek, Jan 26 2016

Keywords

Comments

a(n) >= A266269(n). - Max Alekseyev, Jan 26 2025

Examples

			a(3) = 7 because 7 is the smallest number k such that phi(k) = n*phi(k-1); phi(7) = 6 =3*phi(6) = 3*2.
		

Crossrefs

Sequences of numbers n such that phi(n) = k*phi(n-1): {A001274 + 1} for k=1; A171271 = {A050472 + 1} for k=2; A266268 = {A067143 + 1} for k=3; A268126 = {A172314 + 1} for k=4; {A201253 + 1} for k=5.

Programs

  • Magma
    a:=func; [a(n):n in[1..5]];
    
  • PARI
    a(n) = my(k=2, epk=1, enk); while ((enk=eulerphi(k)) != n*epk, epk = enk; k++); k; \\ Michel Marcus, Feb 20 2020

A276503 Numbers n such that phi(n) = phi(n+10), with Euler's totient function phi = A000010.

Original entry on oeis.org

20, 26, 35, 100, 130, 160, 370, 400, 610, 730, 793, 1000, 1570, 1843, 1930, 2500, 2560, 2770, 2860, 3130, 3970, 4000, 4171, 4210, 4570, 5410, 5767, 6130, 6400, 6610, 6730, 7330, 7570, 8770, 9106, 9640, 9970, 9991, 10498, 10660, 10930, 11248
Offset: 1

Views

Author

Vincenzo Librandi, Sep 08 2016

Keywords

Crossrefs

Cf. A000010.
Cf. numbers n such that phi(n)=phi(n+k): A001274 (k=1), A001494 (k=2), A179186 (k=4), A179187 (k=5), A179188 (k=6), A179189 (k=7), A179202 (k=8), this sequence (k=10), A276504 (k=11), A217139 (k=12).

Programs

  • Magma
    [n: n in [1..20000] | EulerPhi(n) eq EulerPhi(n+10)];
  • Mathematica
    Select[Range[15000], EulerPhi[#] == EulerPhi[# + 10] &]
    SequencePosition[EulerPhi[Range[12000]],{x_,,,_,,,_,,,_,x_}][[;;,1]] (* Harvey P. Dale, Apr 29 2025 *)

A349307 Numbers k such that A072911(k) = A072911(k+1) > 1.

Original entry on oeis.org

80, 135, 296, 343, 375, 567, 624, 728, 783, 944, 1160, 1431, 1592, 1624, 1647, 1808, 1863, 2024, 2240, 2295, 2456, 2511, 2624, 2727, 2888, 3087, 3320, 3429, 3536, 3591, 3624, 3752, 3992, 4023, 4184, 4239, 4375, 4400, 4455, 4624, 4671, 4887, 4912, 4913, 5048, 5103
Offset: 1

Views

Author

Amiram Eldar, Nov 14 2021

Keywords

Comments

Without the restriction that A072911(k) > 1, all the terms of A340152 would be in this sequence.
In contrast to A001274, which has only one known pair of consecutive terms (5186 and 5187), this sequence seems to have many pairs of consecutive terms. The smaller members of these pairs are 4912, 5750, 6858, ...

Examples

			80 is a term since A072911(80) = A072911(81) = 2.
		

Crossrefs

Subsequence of A068140.
Similar sequences: A001274, A287055, A293184, A326403, A349308.

Programs

  • Mathematica
    f[p_, e_] := EulerPhi[e]; ephi[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[5000], ephi[#] == ephi[# + 1] > 1 &]

A275412 Least k such that phi(k*n) = phi(k*n+1), or 0 if no such k exists.

Original entry on oeis.org

1, 52, 1, 26, 3
Offset: 1

Views

Author

Altug Alkan, Jul 27 2016

Keywords

Comments

From Michael De Vlieger, Jul 27 2016: (Start)
Terms 6 through 80, with 0 signifying no such k <= 10^6: {0, 375, 13, 55, 0, 45, 0, 8, 180121, 1, 2054, 15, 0, 116, 0, 125, 482, 2145, 0, 39, 4, 495, 144098, 76, 0, 105, 1027, 15, 37556, 75, 0, 495, 58, 25, 0, 4, 0, 7425, 241, 11, 2294, 178425, 0, 8475, 0, 5, 2, 5415, 0, 9, 72049, 65, 38, 976, 0, 944, 1702, 915, 761, 15, 0, 161175, 18778, 715, 0, 165, 0, 8, 1426, 13, 29, 20451, 0, 416, 0}.
n such that a(n) = 0 in above data: {6, 10, 12, 18, 20, 24, 30, 36, 40, 42, 48, 50, 54, 60, 66, 70, 72, 78, 80}, i.e., multiples of 2 and 3, and 2 and 5. (End)
If a(n) = 0, then a(m*n) = 0 for all m > 0. If c is a divisor of a(n), then a(c*n) = a(n)/c. Conjecture: If A275337(n) = 0, then a(n) = 0. - Chai Wah Wu, Jul 27 2016

Examples

			a(2) = 52 because phi(52*2) = phi(52*2+1).
		

Crossrefs

Programs

  • Mathematica
    Table[k = 1; While[EulerPhi[k n] != EulerPhi[k n + 1], k++]; k, {n, 5}] (* Michael De Vlieger, Jul 27 2016 *)
  • PARI
    a(n) = {my(k = 1); while (eulerphi(k*n) != eulerphi(k*n+1), k++); k; }

Formula

a(A001274(n)) = 1.
Previous Showing 11-20 of 56 results. Next