A060614
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=5 and D varies.
Original entry on oeis.org
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060616
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=6 and D varies.
Original entry on oeis.org
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A060619
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=9 and D varies.
Original entry on oeis.org
0, 1, 22, 52224
Offset: 9
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
- A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
- N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
- Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
A066118
a(n) = n!*(3*n-1)/2.
Original entry on oeis.org
1, 5, 24, 132, 840, 6120, 50400, 463680, 4717440, 52617600, 638668800, 8382528000, 118313395200, 1787154969600, 28768836096000, 491685562368000, 8892185702400000, 169662903201792000, 3406062811447296000, 71770609241210880000, 1583819207322992640000
Offset: 1
-
Array[#!*(3*#-1)/2 &, 25] (* Paolo Xausa, Feb 16 2024 *)
-
{ for (n=1, 100, write("b066118.txt", n, " ", (n!*(3*n - 1))/2) ) } \\ Harry J. Smith, Feb 01 2010
A139359
Number L([n],m) of ways the labeled parts of each integer partition of n can be distributed into m nonempty labeled boxes.
Original entry on oeis.org
1, 2, 2, 3, 6, 6, 5, 16, 36, 24, 7, 46, 150, 240, 120, 11, 114, 546, 1560, 1800, 720, 15, 614, 2058, 8400, 16800, 15120, 5040, 22, 1366, 6984, 40848, 126000, 191520, 141120, 40320, 30, 12516, 73488, 192816, 834120, 1905120, 2328480, 1451520, 362880
Offset: 1
Triangle begins:
1
2 2
3 6 6
5 16 36 24
7 46 150 240 120
11 114 546 1560 1800 720
15 614 2058 8400 16800 15120 5040
22 1366 6984 40848 126000 191520 141120 40320
30 12516 73488 192816 834120 1905120 2328480 1451520 362880
...
- John Riordan: Introduction to Combinatorics, John Wiley & Sons, New York, 1958, ISBN 0-486-42536-3.
A142706
Coefficients of the derivatives of the Eulerian polynomials (with indexing as in A173018).
Original entry on oeis.org
1, 4, 2, 11, 22, 3, 26, 132, 78, 4, 57, 604, 906, 228, 5, 120, 2382, 7248, 4764, 600, 6, 247, 8586, 46857, 62476, 21465, 1482, 7, 502, 29216, 264702, 624760, 441170, 87648, 3514, 8, 1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9
Offset: 1
Triangle T(n, k) starts:
{ 1};
{ 4, 2};
{ 11, 22, 3};
{ 26, 132, 78, 4};
{ 57, 604, 906, 228, 5};
{ 120, 2382, 7248, 4764, 600, 6};
{ 247, 8586, 46857, 62476, 21465, 1482, 7};
{ 502, 29216, 264702, 624760, 441170, 87648, 3514, 8};
{1013, 95680, 1365576, 5241416, 6551770, 2731152, 334880, 8104, 9}.
-
T := (n, k) -> k * combinat:-eulerian1(n+1, k):
for n from 1 to 9 do seq(T(n, k), k = 1..n) od; # Peter Luschny, Feb 07 2023
-
T[n_, k_] := Sum[(-1)^j Binomial[n + 1, j](k + 1 - j)^n, {j, 0, k + 1}];
Table[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], {n, 1, 10}];
Table[CoefficientList[D[Sum[T[n, k]*x^k, {k, 0, n - 1}], x], x], {n, 1, 10}];
Flatten[%]
(* Alternative: *) Needs["Combinatorica`"]
Flatten[Table[k*Eulerian[n+1, k], {n, 1, 9}, {k, 1, n}]] (* Peter Luschny, Feb 07 2023 *)
A176860
Triangle, read by rows, T(n, k) = (-1)^k * (n-k+1)^(n+2) * binomial(n+1, k).
Original entry on oeis.org
1, 8, -2, 81, -48, 3, 1024, -972, 192, -4, 15625, -20480, 7290, -640, 5, 279936, -468750, 245760, -43740, 1920, -6, 5764801, -11757312, 8203125, -2293760, 229635, -5376, 7, 134217728, -322828856, 282175488, -109375000, 18350080, -1102248, 14336, -8
Offset: 0
Triangle begins as:
1;
8, -2;
81, -48, 3;
1024, -972, 192, -4;
15625, -20480, 7290, -640, 5;
279936, -468750, 245760, -43740, 1920, -6;
5764801, -11757312, 8203125, -2293760, 229635, -5376, 7;
134217728, -322828856, 282175488, -109375000, 18350080, -1102248, 14336, -8;
- F. S. Roberts, Applied Combinatorics, Prentice-Hall, 1984, p. 576 and 267.
-
[(-1)^k*(n-k+1)^(n+2)*Binomial(n+1,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 07 2021
-
T[n_, k_]:= (-1)^k*(n-k+1)^(n+2)*Binomial[n+1, k];
Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
flatten([[ (-1)^k*(n-k+1)^(n+2)*binomial(n+1,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 07 2021
A178232
A triangle sequence derived from setting an Euler numbers A122045 generalization equal to the Eulerian numbers A008292 to get a generating function expansion: p(x,t) = ((-1 + exp(x)) (-1 + x)/(-1 + exp(t*x) + t - exp(t)* x)).
Original entry on oeis.org
0, 0, 1, 6, 1, 1, 36, 8, 3, 7, 1, 240, 60, -20, 81, 11, 21, 1, 1800, 480, -510, 822, 143, 173, 123, 51, 1, 15120, 4200, -7560, 8526, 2450, 239, 2381, 435, 715, 113, 1, 141120, 40320, -102480, 93744, 43512, -21320, 36991, 2943, 11035, 4035, 3139, 239, 1
Offset: 0
{0},
{0},
{1},
{6, 1, 1},
{36, 8, 3, 7, 1},
{240, 60, -20, 81, 11, 21, 1},
{1800, 480, -510, 822, 143, 173, 123, 51, 1},
{15120, 4200, -7560, 8526, 2450, 239, 2381, 435, 715, 113, 1},
{141120, 40320, -102480, 93744, 43512, -21320, 36991, 2943, 11035, 4035, 3139, 239, 1},
{1451520, 423360, -1391040, 1103760, 763056, -585432, 527544, 71353, 82513, 107377, 39589, 36349, 11947, 493, 1},
{16329600, 4838400, -19504800, 13940640, 13361040, -12088080, 7137270, 2643650, -749001, 2527719, 165459, 900099, 256743, 251073, 41883, 1003, 1}
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 78-79.
- L. Comtet, Advanced Combinatorics, Reidel, Holland, 1978, page 245.
-
p[t_] = ((-1 + Exp[x]) (-1 + x)/(-1 + Exp[t*x] + t - Exp[t]* x));
a = Table[ CoefficientList[FullSimplify[ExpandAll[(FullSimplify[ExpandAll[ -(1/((-1 + Exp[x])*(-1 + x)))*x^(n + 1)*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]] - n!)/(x^2*(-1 + x))]], x], {n, 0, 10}] Flatten[a]
A202363
Triangular array read by rows: T(n,k) is the number of inversion pairs ( p(i) < p(j) with i>j ) that are separated by exactly k elements in all n-permutations (where the permutation is represented in one line notation); n>=2, 0<=k<=n-2.
Original entry on oeis.org
1, 6, 3, 36, 24, 12, 240, 180, 120, 60, 1800, 1440, 1080, 720, 360, 15120, 12600, 10080, 7560, 5040, 2520, 141120, 120960, 100800, 80640, 60480, 40320, 20160, 1451520, 1270080, 1088640, 907200, 725760, 544320, 362880, 181440, 16329600, 14515200, 12700800, 10886400, 9072000, 7257600, 5443200, 3628800, 1814400
Offset: 2
T(3,1) = 3 because from the permutations (given in one line notation): (2,3,1), (3,1,2), (3,2,1) we have respectively 3 inversion pairs (1,2), (2,3) and (1,3) which are all separated by 1 element.
Triangle T(n,k) begins:
1;
6, 3;
36, 24, 12;
240, 180, 120, 60;
1800, 1440, 1080, 720, 360;
15120, 12600, 10080, 7560, 5040, 2520;
141120, 120960, 100800, 80640, 60480, 40320, 20160;
...
-
nn=10;Range[0,nn]!CoefficientList[Series[x^2/2/(1-x)^2/(1-y x),{x,0,nn}],{x,y}]//Grid
A317483
Circuit rank of the n-Bruhat graph.
Original entry on oeis.org
0, 0, 1, 13, 121, 1081, 10081, 100801, 1088641, 12700801, 159667201, 2155507201, 31135104001, 479480601601, 7846046208001, 135998134272001, 2489811996672001, 48017802792960001, 973160803270656001, 20679667069501440001, 459818479545384960001, 10678006913887272960001
Offset: 1
Comments