cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 274 results. Next

A002439 Glaisher's T numbers.

Original entry on oeis.org

1, 23, 1681, 257543, 67637281, 27138236663, 15442193173681, 11828536957233383, 11735529528739490881, 14639678925928297567703, 22427641105413135505628881, 41393949926819051111431239623, 90592214447886493688036507587681, 231969423543894989257690172433129143
Offset: 0

Views

Author

Keywords

Comments

Kashaev's invariant for the (3,2)-torus knot. See Hikami 2003. For other Kashaev invariants see A208679, A208680, and A208681. - Peter Bala, Mar 01 2012
From Peter Bala, Dec 18 2021: (Start)
Glaisher's T numbers occur in the evaluation of the L-function L(X_12,s) := Sum_{k >= 1} X_12(k)/k^s for positive even values of s, where X_12(n) = A110161(n) is a nonprincipal Dirichlet character mod 12: the result is L(X_12,2*n+2) = a(n)/(6*sqrt(3)*36^n*(2*n+1)!) * Pi^(2*n+2).
We make the following conjectures:
1) Taking the sequence modulo an integer k gives an eventually periodic sequence with period dividing phi(k). For example, the sequence taken modulo 50 begins [1, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, 31, 43, 31, 13, 31, 33, 31, 3, 31, 23, ...] and appears to have a pre-period of length 1 and a period of length 10 = (1/2)*phi(50).
2) Let i >= 0 and define a_i(n) = a(n+i). Then for each i the Gauss congruences a_i(n*p^k) == a_i(n*p^(k-1)) ( mod p^k ) hold for all prime p and positive integers n and k.
If true, then for each i the expansion of exp( Sum_{n >= 1} a_i(n)*x^n/n ) has integer coefficients.
3)(i) a(m*n) == a(m)^n (mod 2^k) for k = 2*v_2(m) + 7, where v_p(i) denotes the p-adic valuation of i.
(ii) a(m*n) == a(m)^n (mod 3^k) for k = 2*v_3(m) + 2.
4)(i) a(2*m*n) == a(n)^(2*m) (mod 2^k) for k = v_2(m) + 7
(ii) a((2*m+1)*n) == a(n)^(2*m+1) (mod 2^k) for k = v_2(m) + 7.
5)(i) a(3*m*n) == a(n)^(3*m) (mod 3^k) for k = v_3(m) + 2
(ii) a((3*m+1)*n) == a(n)^(3*m+1) (mod 3^k) for k = v_3(m) + 2
(iii) a((3*m+2)*n) == a(n)^(3*m+2) (mod 3^2).
6) For prime p >= 5, a((p-1)/2*n*m) == a((p-1)/2*n)^m (mod p^k) for k = v_p(m-1) + 1. (End)

Examples

			G.f. = 1 + 23*x + 1681*x^2 +257543*x^3 + 67637281*x^4 + 27138236663*x^5 + ...
		

References

  • A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 76.
  • J. W. L. Glaisher, Messenger of Math., 28 (1898), 36-79, see esp. p. 76.
  • J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., 29 (1898), 1-168.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisections: A156175, A156176.
Twice this sequence gives A000191. A208679, A208680, A208681.

Programs

  • Magma
    m:=32; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Sin(2*x)/(2*Cos(3*x)) )); [Factorial(2*n-1)*b[2*n-1]: n in [1..Floor((m-2)/2)]]; // G. C. Greubel, Jul 04 2019
    
  • Maple
    A002439 := proc(n) option remember; if n = 0 then 1; else (-4)^n-add((-9)^k*binomial(2*n+1, 2*k)*procname(n-k), k=1..n+1) ; end if; end proc:
  • Mathematica
    a[n_] := a[n] = (-4)^n - Sum[(-9)^k*Binomial[2n + 1, 2k]*a[n-k], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Dec 05 2011, after Maple *)
    With[{nn=30},Take[CoefficientList[Series[Sin[2x]/(2Cos[3x]),{x,0,nn}], x]Range[0,nn-1]!,{2,-1,2}]] (* Harvey P. Dale, Feb 05 2012 *)
    a[n_] := -(-4)^n 3^(1 + 2 n) EulerE[1 + 2 n, 1/6]  (* Bill Gosper, Oct 12 2015 *)
  • PARI
    {a(n) = my(m=n+1); if( m<2, m>0, (-4)^(m-1) - sum(k=1, m, (-9)^k * binomial(2*m-1, 2*k) * a(n-k)))}; /* Michael Somos, Dec 11 1999 */
    
  • Sage
    m = 32; T = taylor(sin(2*x)/(2*cos(3*x)), x, 0, m); [factorial(2*n+1)*T.coefficient(x, 2*n+1) for n in (0..(m-2)/2)] # G. C. Greubel, Jul 04 2019

Formula

Q_{2n+1}(sqrt(3))/sqrt(3), where the polynomials Q_n() are defined in A104035. - N. J. A. Sloane, Nov 06 2009
E.g.f.: sin(2*x)/(2*cos(3*x)) = Sum a(n)*x^(2*n+1)/(2*n+1)!.
With offset 1 instead of 0: a(1)=1, a(n)=(-4)^(n-1) - Sum_{k=1..n} (-9)^k*C(2*n-1, 2*k)*a(n-k).
a(n) = -(-4)^n*3^(2n+1)*E_{2n+1}(1/6), where E is an Euler polynomial. - Bill Gosper, Aug 08 2001, corrected Oct 12 2015.
From Peter Bala, Mar 24 2009: (Start)
Basic hypergeometric generating function: exp(-t)*Sum {n = 0..inf} Product {k = 1..n} (1-exp(-24*k*t)) = 1 + 23*t + 1681*t^2/2! + .... For other sequences with generating functions of a similar type see A000364, A000464, A002105, A079144, A158690.
a(n) = (1/2)*(-1)^(n+1)*L(-2*n-1), where L(s) is a Dirichlet L-function for a Dirichlet character with modulus 12: L(s) = 1 - 1/5^s - 1/7^s + 1/11^s + - - + .... See the Andrew's link. (End)
From Peter Bala, Jan 21 2011: (Start)
Let I = sqrt(-1) and w = exp(2*Pi*I/6). Then
a(n) = I/sqrt(3) *sum {k = 0..2*n+2} w^(n-k) *sum {j = 1..2*n+2} (-1)^(k-j) *binomial(2*n+2,k-j) *(2*j-1)^(2*n+1).
This formula can be used to obtain congruences for a(n). For example, for odd prime p we find a(p-1) = 1 (mod p) and a((p-1)/2) = (-1)^((p-1)/2) (mod p).
Cf. A002437 and A182825. (End)
a(n) = (-1)^n/(4*n+4)*12^(2*n+1)*sum {k = 1..12} X(k)*B(2*n+2,k/12), where B(n,x) is a Bernoulli polynomial and X(n) is a periodic function modulo 12 given by X(n) = 0 except for X(12*n+1) = X(12*n+11) = 1 and X(12*n+5) = X(12*n+7) = -1. - Peter Bala, Mar 01 2012
a(n) ~ n^(2*n+3/2) * 2^(4*n+3) * 3^(2*n+3/2) / (exp(2*n) * Pi^(2*n+3/2)). - Vaclav Kotesovec, Mar 01 2014
From Peter Bala, May 11 2017: (Start)
Let X = 24*x. G.f. A(x) = 1/(1 + x - X/(1 - 2*X/(1 + x - 5*X/(1 - 7*X/(1 + x - 12*X/(1 - ...)))))) = 1 + 23*x + 1681*x^2 + ..., where the sequence [1, 2, 5, 7, 12, ...] of unsigned coefficients in the partial numerators of the continued fraction are generalized pentagonal numbers A001318.
A(x) = 1/(1 + 25*x - 2*X/(1 - X/(1 + 25*x - 7*X/(1 - 5*X/(1 + 25*x - 15*X/(1 - 12*X/(1 + 25*x - 26*X/(1 - 22*X/(1 + 25*x - ...))))))))), where the sequence [2, 1, 7, 5, 15, 12, 26, 22, ...] of unsigned coefficients in the partial numerators is obtained by swapping pairs of adjacent generalized pentagonal numbers.
G.f. as a J-fraction: A(x) = 1/(1 - 23*x - 2*X^2/(1 - 167*x - 5*7*X^2/(1 - 455*x - 12*15*X^2/(1 - 887*x - ...)))).
Let B(x) = 1/(1 - x)*A(x/(1 - x)), that is, B(x) is the binomial transform of A(x). Then B(x/24) is the o.g.f. for A079144. (End)
a(n) == 23^n ( mod (2^7)*(3^2) ). - Peter Bala, Dec 25 2021

Extensions

More terms from Michael Somos
Offset changed from 1 to 0 by N. J. A. Sloane, Dec 11 1999

A277082 Generalized 15-gonal (or pentadecagonal) numbers: n*(13*n - 11)/2, n = 0,+1,-1,+2,-2,+3,-3, ...

Original entry on oeis.org

0, 1, 12, 15, 37, 42, 75, 82, 126, 135, 190, 201, 267, 280, 357, 372, 460, 477, 576, 595, 705, 726, 847, 870, 1002, 1027, 1170, 1197, 1351, 1380, 1545, 1576, 1752, 1785, 1972, 2007, 2205, 2242, 2451, 2490, 2710, 2751, 2982, 3025, 3267, 3312, 3565, 3612, 3876, 3925, 4200, 4251, 4537, 4590, 4887, 4942
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2016

Keywords

Comments

More generally, the ordinary generating function for the generalized k-gonal numbers is x*(1 + (k - 4)*x + x^2)/((1 - x)^3*(1 + x)^2). A general formula for the generalized k-gonal numbers is given by (k*(2*n^2 + 2*((-1)^n + 1)*n + (-1)^n - 1) - 2*(2*n^2 + 2*(3*(-1)^n + 1)*n + 3*((-1)^n - 1)))/16.
For k>4, Sum_{n>=1} 1/a(k,n) = 2*(k-2)/(k-4)^2 + 2*Pi*cot(2*Pi/(k-2))/(k-4). - Vaclav Kotesovec, Oct 05 2016
Numbers k for which 104*k + 121 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317311. - Omar E. Pol, Jul 28 2018

Crossrefs

Cf. A051867 (15-gonal numbers), A316672, A317311.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), this sequence (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,12,15,37];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Mathematica
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 12, 15, 37}, 56]
    Table[(26 n^2 + 26 n + 9 (-1)^n (2 n + 1) - 9)/16, {n, 0, 55}]
  • PARI
    concat(0, Vec(x*(1+11*x+x^2)/((1-x)^3*(1+x)^2) + O(x^99))) \\ Altug Alkan, Oct 01 2016
    

Formula

G.f.: x*(1 + 11*x + x^2)/((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (26*n^2 + 26*n + 9*(-1)^n*(2*n+1) - 9)/16.
Sum_{n>=1} 1/a(n) = 26/121 + 2*Pi*cot(2*Pi/13)/11 = 1.3032041594895857... . - Vaclav Kotesovec, Oct 05 2016

A303813 Generalized 19-gonal (or enneadecagonal) numbers: m*(17*m - 15)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 16, 19, 49, 54, 99, 106, 166, 175, 250, 261, 351, 364, 469, 484, 604, 621, 756, 775, 925, 946, 1111, 1134, 1314, 1339, 1534, 1561, 1771, 1800, 2025, 2056, 2296, 2329, 2584, 2619, 2889, 2926, 3211, 3250, 3550, 3591, 3906, 3949, 4279, 4324, 4669, 4716, 5076, 5125, 5500, 5551, 5941, 5994, 6399
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

Numbers k for which 136*k + 225 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317315. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), this sequence (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,16,19,49];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Mathematica
    With[{nn = 54}, {0}~Join~Riffle[Array[PolygonalNumber[19, #] &, Ceiling[nn/2]], Array[PolygonalNumber[19, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    CoefficientList[ Series[-x (x^2 + 15x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 16, 19, 49}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 15*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jun 08 2018
    

Formula

From Colin Barker, Jun 08 2018: (Start)
G.f.: x*(1 + 15*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = (34*n^2 + 60*n)/16 for n even.
a(n) = (34*n^2 + 8*n - 26)/16 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)

A303815 Generalized 29-gonal (or icosienneagonal) numbers: m*(27*m - 25)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 26, 29, 79, 84, 159, 166, 266, 275, 400, 411, 561, 574, 749, 764, 964, 981, 1206, 1225, 1475, 1496, 1771, 1794, 2094, 2119, 2444, 2471, 2821, 2850, 3225, 3256, 3656, 3689, 4114, 4149, 4599, 4636, 5111, 5150, 5650, 5691, 6216, 6259, 6809, 6854, 7429, 7476, 8076
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

Numbers k such that 216*k + 625 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317325.

Crossrefs

Cf. A255187, A277990 (see the third comment), A316672, A317325.
Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), this sequence (k=29), A316729 (k=30).

Programs

  • Mathematica
    Table[(54 n (n + 1) + 23 (2 n + 1) (-1)^n - 23)/16, {n, 0, 50}] (* Bruno Berselli, Jun 07 2018 *)
    CoefficientList[ Series[-x (x^2 + 25x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 26, 29, 79, 84}, 50] (* Robert G. Wilson v, Jul 28 2018 *)
    With[{nn=25},Riffle[Table[1-(29x)/2+(27x^2)/2,{x,nn}],PolygonalNumber[ 29,Range[ nn]]]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 26 2020 *)
  • PARI
    concat(0, Vec(x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 07 2018: (Start)
G.f.: x*(1 + 25*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (54*n*(n + 1) + 23*(2*n + 1)*(-1)^n - 23)/16. Therefore:
a(n) = n*(27*n + 50)/8, if n is even, or (n + 1)*(27*n - 23)/8 otherwise.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) - n*(27*n^2 - 25) = 0. (End)
Sum_{n>=1} 1/a(n) = 2*(27 + 25*Pi*cot(2*Pi/27))/625. - Amiram Eldar, Mar 01 2022

A303298 Generalized 21-gonal (or icosihenagonal) numbers: m*(19*m - 17)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 18, 21, 55, 60, 111, 118, 186, 195, 280, 291, 393, 406, 525, 540, 676, 693, 846, 865, 1035, 1056, 1243, 1266, 1470, 1495, 1716, 1743, 1981, 2010, 2265, 2296, 2568, 2601, 2890, 2925, 3231, 3268, 3591, 3630, 3970, 4011, 4368, 4411, 4785, 4830, 5221, 5268, 5676, 5725, 6150, 6201, 6643, 6696, 7155, 7210
Offset: 0

Views

Author

Omar E. Pol, Jun 23 2018

Keywords

Comments

Numbers k for which 152*k + 289 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317317. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), this sequence (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,18,21,55];;  for n in [6..60] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Maple
    a:= n-> (m-> m*(19*m-17)/2)(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    CoefficientList[Series[-(x^2 + 17 x + 1) x/((x + 1)^2*(x - 1)^3), {x, 0, 55}], x] (* or *)
    Array[PolygonalNumber[21, (1 - 2 Boole[EvenQ@ #]) Ceiling[#/2]] &, 56, 0] (* Michael De Vlieger, Jul 10 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 18, 21, 55}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 17*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jun 24 2018
    

Formula

G.f.: -(x^2+17*x+1)*x/((x+1)^2*(x-1)^3). - Alois P. Heinz, Jun 23 2018
From Colin Barker, Jun 24 2018: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
a(n) = (19*n^2 + 34*n) / 8 for n even.
a(n) = (19*n^2 + 4*n - 15) / 8 for n odd.
(End)
Sum_{n>=1} 1/a(n) = 38/289 + 2*Pi*cot(2*Pi/19)/17. - Amiram Eldar, Feb 28 2022

A303305 Generalized 17-gonal (or heptadecagonal) numbers: m*(15*m - 13)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 14, 17, 43, 48, 87, 94, 146, 155, 220, 231, 309, 322, 413, 428, 532, 549, 666, 685, 815, 836, 979, 1002, 1158, 1183, 1352, 1379, 1561, 1590, 1785, 1816, 2024, 2057, 2278, 2313, 2547, 2584, 2831, 2870, 3130, 3171, 3444, 3487, 3773, 3818, 4117, 4164, 4476, 4525, 4850
Offset: 0

Views

Author

Omar E. Pol, Jun 06 2018

Keywords

Comments

120*a(n) + 169 is a square. - Bruno Berselli, Jun 08 2018
Partial sums of A317313. - Omar E. Pol, Jul 28 2018
Generalized k-gonal numbers are second k-gonal numbers and positive terms of k-gonal numbers interleaved, k >= 5. They are also the partial sums of the sequence formed by the multiples of (k - 4) and the odd numbers (A005408) interleaved, k >= 5. In this case k = 17. - Omar E. Pol, Apr 25 2021

Examples

			From _Omar E. Pol_, Apr 24 2021: (Start)
Illustration of initial terms as vertices of a rectangular spiral:
        43_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _17
         |                                                   |
         |                         0                         |
         |                         |_ _ _ _ _ _ _ _ _ _ _ _ _|
         |                         1                         14
         |
        48
More generally, all generalized k-gonal numbers can be represented with this kind of spirals, k >= 5". (End)
		

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), this sequence (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    With[{pp = 17, nn = 55}, {0}~Join~Riffle[Array[PolygonalNumber[pp, #] &, Ceiling[nn/2]], Array[PolygonalNumber[pp, -#] &, Ceiling[nn/2]]]] (* Michael De Vlieger, Jun 06 2018 *)
    Table[(30 n (n + 1) + 11 (2 n + 1) (-1)^n - 11)/16, {n, 0, 60}] (* Bruno Berselli, Jun 08 2018 *)
    CoefficientList[ Series[-x (x^2 + 13x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 14, 17, 43}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 13*x + x^2)/((1 + x)^2*(1 - x)^3) + O(x^40))) \\ Colin Barker, Jun 12 2018

Formula

From Bruno Berselli, Jun 08 2018: (Start)
G.f.: x*(1 + 13*x + x^2)/((1 + x)^2*(1 - x)^3).
a(n) = a(-n-1) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
a(n) = (30*n*(n + 1) + 11*(2*n + 1)*(-1)^n - 11)/16. Therefore:
a(n) = n*(15*n + 26)/8, if n is even, or (n + 1)*(15*n - 11)/8 otherwise.
2*(2*n - 1)*a(n) + 2*(2*n + 1)*a(n-1) - n*(15*n^2 - 13) = 0. (End)

A051866 14-gonal (or tetradecagonal) numbers: a(n) = n*(6*n-5).

Original entry on oeis.org

0, 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, 804, 949, 1106, 1275, 1456, 1649, 1854, 2071, 2300, 2541, 2794, 3059, 3336, 3625, 3926, 4239, 4564, 4901, 5250, 5611, 5984, 6369, 6766, 7175, 7596, 8029, 8474, 8931, 9400, 9881, 10374
Offset: 0

Views

Author

N. J. A. Sloane, Dec 15 1999

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 14, ... and the parallel line from 1, in the direction 1, 39, ..., in the square spiral whose vertices are the generalized 14-gonal numbers A195818. Also sequence found by reading the segment (0, 1) together with the line from 1, in the direction 1, 14, ..., in the square spiral whose vertices are the generalized pentagonal numbers A001318. - Omar E. Pol, Jul 18 2012
After 0, partial sums of A017533. - Bruno Berselli, Sep 11 2013
This is also a star heptagonal number: a(n) = A000566(n) + 7*A000217(n-1). - Luciano Ancora, Mar 30 2015
Starting with offset 1, this is the binomial transform of (1, 13, 12, 0, 0, 0, ...). - Gary W. Adamson, Jul 29 2015

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, p. 189.
  • Elena Deza and Michel Marie Deza, Figurate numbers, World Scientific Publishing, 2012, page 6.

Crossrefs

Programs

Formula

G.f.: x*(1+11*x)/(1-x)^3. - Bruno Berselli, Feb 04 2011
a(n) = 12*n + a(n-1) - 11, with n > 0, a(0)=0. - Vincenzo Librandi, Aug 06 2010
a(n) = A033568(n) - 1. - Omar E. Pol, Jul 18 2012
a(12*a(n)+67*n+1) = a(12*a(n) + 67*n) + a(12*n + 1). - Vladimir Shevelev, Jan 24 2014
From Amiram Eldar, Oct 20 2020: (Start)
Sum_{n>=1} 1/a(n) = (sqrt(3)*Pi + log(432))/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + 2*sqrt(3)*arccoth(sqrt(3)) - log(2))/5. (End)
Product_{n>=2} (1 - 1/a(n)) = 6/7. - Amiram Eldar, Jan 21 2021
E.g.f.: exp(x)*x*(1 + 6*x). - Stefano Spezia, Jun 08 2021

A303299 Generalized 22-gonal (or icosidigonal) numbers: m*(10*m - 9) with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 19, 22, 58, 63, 117, 124, 196, 205, 295, 306, 414, 427, 553, 568, 712, 729, 891, 910, 1090, 1111, 1309, 1332, 1548, 1573, 1807, 1834, 2086, 2115, 2385, 2416, 2704, 2737, 3043, 3078, 3402, 3439, 3781, 3820, 4180, 4221, 4599, 4642, 5038, 5083, 5497, 5544, 5976, 6025, 6475, 6526, 6994, 7047, 7533, 7588
Offset: 0

Views

Author

Omar E. Pol, Jun 23 2018

Keywords

Comments

Partial sums of A317318. - Omar E. Pol, Jul 28 2018
Exponents in expansion of Product_{n >= 1} (1 + x^(20*n-19))*(1 + x^(20*n-1))*(1 - x^(20*n)) = 1 + x + x^19 + x^22 + x^58 + .... - Peter Bala, Dec 10 2020

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), this sequence (k=22), A303303 (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Maple
    a:= n-> (m-> m*(10*m-9))(-ceil(n/2)*(-1)^n):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jun 23 2018
  • Mathematica
    CoefficientList[ Series[-x (x^2 + 18x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 19, 22, 58}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
    nn=30; Sort[Table[n (10 n - 9), {n, -nn, nn}]] (* Vincenzo Librandi, Jul 29 2018 *)
  • PARI
    a(n) = n++; my(m = (-1) ^ n * (n >> 1)); m * (10 * m - 9) \\ David A. Corneth, Jun 23 2018
    
  • PARI
    concat(0, Vec(x*(1 + 18*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^60))) \\ Colin Barker, Jun 23 2018

Formula

From Colin Barker, Jun 23 2018: (Start)
G.f.: x*(1 + 18*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = (5*n^2 + 9*n)/2 for n even.
a(n) = (5*n^2 + n - 4)/2 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = (10 + 9*sqrt(5+2*sqrt(5))*Pi)/81. - Amiram Eldar, Mar 01 2022

A303303 Generalized 23-gonal (or icositrigonal) numbers: m*(21*m - 19)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 20, 23, 61, 66, 123, 130, 206, 215, 310, 321, 435, 448, 581, 596, 748, 765, 936, 955, 1145, 1166, 1375, 1398, 1626, 1651, 1898, 1925, 2191, 2220, 2505, 2536, 2840, 2873, 3196, 3231, 3573, 3610, 3971, 4010, 4390, 4431, 4830, 4873, 5291, 5336, 5773, 5820, 6276, 6325, 6800, 6851, 7345, 7398, 7911, 7966
Offset: 0

Views

Author

Omar E. Pol, Jun 24 2018

Keywords

Comments

168*a(n) + 361 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317319. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), this sequence (k=23), A303814 (k=24), A303304 (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • Mathematica
    CoefficientList[ Series[-x (x^2 + 19x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* or *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 20, 23, 61}, 51] (* Robert G. Wilson v, Jul 28 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 19*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^50))) \\ Colin Barker, Jun 27 2018

Formula

From Colin Barker, Jun 27 2018: (Start)
G.f.: x*(1 + 19*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(21*n + 38) / 8 for n even.
a(n) = (21*n - 17)*(n + 1) / 8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 42/361 + 2*Pi*cot(2*Pi/21)/19. - Amiram Eldar, Mar 01 2022

A303304 Generalized 25-gonal (or icosipentagonal) numbers: m*(23*m - 21)/2 with m = 0, +1, -1, +2, -2, +3, -3, ...

Original entry on oeis.org

0, 1, 22, 25, 67, 72, 135, 142, 226, 235, 340, 351, 477, 490, 637, 652, 820, 837, 1026, 1045, 1255, 1276, 1507, 1530, 1782, 1807, 2080, 2107, 2401, 2430, 2745, 2776, 3112, 3145, 3502, 3537, 3915, 3952, 4351, 4390, 4810, 4851, 5292, 5335, 5797, 5842, 6325, 6372, 6876, 6925
Offset: 0

Views

Author

Omar E. Pol, Jul 10 2018

Keywords

Comments

Numbers k for which 184*k + 441 is a square. - Bruno Berselli, Jul 10 2018
Partial sums of A317321. - Omar E. Pol, Jul 28 2018

Crossrefs

Sequences of generalized k-gonal numbers: A001318 (k=5), A000217 (k=6), A085787 (k=7), A001082 (k=8), A118277 (k=9), A074377 (k=10), A195160 (k=11), A195162 (k=12), A195313 (k=13), A195818 (k=14), A277082 (k=15), A274978 (k=16), A303305 (k=17), A274979 (k=18), A303813 (k=19), A218864 (k=20), A303298 (k=21), A303299 (k=22), A303303 (k=23), A303814 (k=24), this sequence (k=25), A316724 (k=26), A316725 (k=27), A303812 (k=28), A303815 (k=29), A316729 (k=30).

Programs

  • GAP
    a:=[0,1,22,25,67];;  for n in [6..50] do a[n]:=a[n-1]+2*a[n-2]-2*a[n-3]-a[n-4]+a[n-5]; od; a; # Muniru A Asiru, Jul 10 2018
  • Maple
    seq(coeff(series(x*(x^2+21*x+1)/((1-x)^3*(1+x)^2), x,n+1),x,n),n=0..50); # Muniru A Asiru, Jul 10 2018
  • Mathematica
    CoefficientList[Series[x (1 + 21 x + x^2)/((1 - x)^3*(1 + x)^2), {x, 0, 49}], x] (* or *)
    Array[PolygonalNumber[25, (1 - 2 Boole[EvenQ@ #]) Ceiling[#/2]] &, 50, 0] (* Michael De Vlieger, Jul 10 2018 *)
    LinearRecurrence[{1, 2, -2, -1, 1}, {0, 1, 22, 25, 67}, 50] (* Robert G. Wilson v, Jul 15 2018 *)
  • PARI
    concat(0, Vec(x*(1 + 21*x + x^2) / ((1 - x)^3*(1 + x)^2) + O(x^40))) \\ Colin Barker, Jul 10 2018
    

Formula

From Colin Barker, Jul 10 2018: (Start)
G.f.: x*(1 + 21*x + x^2) / ((1 - x)^3*(1 + x)^2).
a(n) = n*(23*n + 42)/8 for n even.
a(n) = (23*n - 19)*(n + 1)/8 for n odd.
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4.
(End)
Sum_{n>=1} 1/a(n) = 46/441 + 2*Pi*cot(2*Pi/23)/21. - Amiram Eldar, Mar 01 2022
Previous Showing 61-70 of 274 results. Next