cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 70 results. Next

A082425 a(1)=1, a(n) = -1 + n*Sum_{j=1..n-1} a(j).

Original entry on oeis.org

1, 1, 5, 27, 169, 1217, 9939, 90871, 920069, 10222989, 123698167, 1619321459, 22805443881, 343835923129, 5525934478859, 94309281772527, 1703461402016269, 32465970250192421, 651123070017747999, 13707854105636799979, 302258183029291439537, 6966331456484621749329
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Crossrefs

Programs

  • Magma
    [n le 2 select 1 else (n^2*Self(n-1) +1)/(n-1): n in [1..30]]; // G. C. Greubel, Feb 03 2024
    
  • Maple
    a:= n -> n*n!*add(1/(k*(k-1)*k!), k = 2..n): seq(a(n), n = 2..20); # Peter Bala, Jul 09 2008
  • Mathematica
    a[n_]:= a[n]= If[n<3, 1, -1 +n*Sum[a[j], {j,n-1}]];
    Table[a[n], {n,40}] (* G. C. Greubel, Feb 03 2024 *)
  • SageMath
    @CachedFunction # a = A082425
    def a(n): return 1 if (n==1) else -1 + n*sum(a(j) for j in range(1,n))
    [a(n) for n in range(1,41)] # G. C. Greubel, Feb 03 2024

Formula

For n >= 2, a(n) = floor(n*(3-e)*n!).
a(n) = n*A056543(n) - 1, n > 1. - Vladeta Jovovic, Apr 26 2003
From Peter Bala, Jul 09 2008: (Start)
In the following remarks we use an offset of 1, i.e., a(1) = 1, a(2) = 1, a(3) = 5, ... .
For n >= 2, a(n) = n*n!*Sum_{k = 2..n} 1/(k*(k-1)*k!).
For n >= 2, a(n) = 3*n*n! - Sum_{k = 0..n} (k+1)!*binomial(n,k).
Limit_{n -> oo} a(n)/(n*n!) = 3 - e.
E.g.f.: 1 + t + (3*t - exp(t))/(1-t)^2.
a(n) = A083746(n+2) - A001339(n).
Recurrence relation: a(1) = 1, a(2) = 1, a(3) = 5, a(n) = (n+2)*a(n-1) - (n-1)*a(n-2) for n >= 4.
Recurrence relation: a(1) = 1, a(2) = 1, a(n) = (n^2*a(n-1) + 1)/(n-1) for n >= 3.
The recurrence relation x(n) = (n^2*x(n-1) - 1)/(n-1), for n >= 2, has the general solution x(n) = n*n!*x(1) - a(n); particular solutions are A007808 (x(1) = 1) and A001339 (x(1) = 3). (End)

Extensions

Offset corrected by G. C. Greubel, Feb 03 2024

A093964 a(n) = Sum_{k=1..n} k*k!*C(n,k).

Original entry on oeis.org

0, 1, 6, 33, 196, 1305, 9786, 82201, 767208, 7891281, 88776910, 1085051121, 14322674796, 203121569833, 3080677142466, 49764784609065, 853110593298256, 15469738758475041, 295858753755835158, 5951981987323272001, 125652953065713520020, 2777591594084193600441
Offset: 0

Views

Author

Ralf Stephan, Apr 20 2004

Keywords

Comments

Limit to which the columns of array A093966 converge.
Number of objects in all permutations of n objects taken 1,2,...,n at a time. Example: a(2)=6 because the permutations of {a,b} taken 1 and 2 at a time are: a,b,ab and ba, containing altogether 1+1+2+2=6 objects. a(n)=Sum(k*A008279(n,k),k=1..n). - Emeric Deutsch, Aug 16 2006
The number of sequences -where each member is an element in a set consisting of n elements- such that the last member is a repetition of a former member. Example: Set of possible members: {l,r}. Sequences such that the last member is a repetition of a former member: l,l; r,r; l,r,l; l,r,r; r,l,l; r,l,r. a(n)=Sum(k*A008279(n,k),k=1..n). [From Franz Fritsche (ff(AT)simple-line.de), Feb 22 2009]
The total number of elements in all ascending runs (including runs of length 1) over all permutations of {1,2,...,n}. a(2) = 6 because in the permutations [1,2] and [2,1] there are 4 runs of length 1 and 1 run of length 2. a(n) = Sum_{k>=1} A132159(n,k)*k. - Geoffrey Critzer, Feb 24 2014

Examples

			G.f. = x + 6*x^2 + 33*x^3 + 196*x^4 + 1305*x^5 + 9786*x^6 + 82201*x^7 + ...
		

Crossrefs

Row n=2 of A210472. - Alois P. Heinz, Jan 23 2013

Programs

  • Magma
    [0] cat [n le 2 select 6^(n-1) else n*((n+1)*Self(n-1) - (n-1)*Self(n-2))/(n-1): n in [1..30]]; // G. C. Greubel, Dec 29 2021
    
  • Maple
    seq(add(k*n!/(n-k)!,k=1..n),n=0..20); # Emeric Deutsch, Aug 16 2006
    # second Maple program:
    a:= proc(n) a(n):=`if`(n<2, n, n*((n+1)/(n-1)*a(n-1)-a(n-2))) end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 21 2013
  • Mathematica
    nn=21;Range[0,nn]!CoefficientList[Series[D[Exp[y x]/(1-x)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Feb 24 2014 *)
  • PARI
    a(n)=sum(k=1,n,k*k!*binomial(n,k))
    
  • Sage
    [factorial(n)*( x*exp(x)/(1-x)^2 ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Dec 29 2021

Formula

E.g.f.: x*exp(x)/(1-x)^2. - Vladeta Jovovic, Apr 24 2004
a(n) = 1 + (n-1)*floor(e*n!) = 1 + (n-1)*A000522(n) = A000522(n+1) - 2*A000522(n) = A001339(n) - A000522(n). - Henry Bottomley, Dec 22 2008
a(n) = n if n < 2, a(n) = n*((n+1)/(n-1)*a(n-1) - a(n-2)) for n >= 2. - Alois P. Heinz, Jan 21 2013
E.g.f.: x*(1- 12*x/(Q(0)+6*x-3*x^2))/(1-x)^2, where Q(k) = 2*(4*k+1)*(32*k^2+16*k+x^2-6) - x^4*(4*k-1)*(4*k+7)/Q(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
G.f.: conjecture: T(0)/x - 1/x, where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 - 2*x*(k+1))*(1 - 2*x*(k+2))/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2013
a(n) = n*a(n-1) + A007526(n), a(0) = 0. - David M. Cerna, May 12 2014

Extensions

a(0) inserted by Alois P. Heinz, Jan 21 2013

A269953 Triangle read by rows: T(n, k) = Sum_{j=0..n} binomial(-j-1, -n-1)*S1(j, k) where S1 are the Stirling cycle numbers A132393.

Original entry on oeis.org

1, -1, 1, 1, -1, 1, -1, 2, 0, 1, 1, 0, 5, 2, 1, -1, 9, 15, 15, 5, 1, 1, 35, 94, 85, 40, 9, 1, -1, 230, 595, 609, 315, 91, 14, 1, 1, 1624, 4458, 4844, 2779, 924, 182, 20, 1, -1, 13209, 37590, 43238, 26817, 9975, 2310, 330, 27, 1
Offset: 0

Views

Author

Peter Luschny, Apr 12 2016

Keywords

Comments

Replacing the Stirling cycle numbers in the definition by the Stirling set numbers leads to A105794.
From Wolfdieter Lang, Jun 19 2017: (Start)
The triangle t(n, k) = (-1)^(n-k)*T(n, k) is the matrix product of P = A007318 (Pascal) and s1 = A048994 (signed Stirling1). This is Sheffer (exp(t), log(1+t)).
The present triangle T is therefore the Sheffer triangle (exp(-t), -log(1-t)). Note that P is Sheffer (exp(t), t) (of the Appell type). (End)
The triangle T(n,k) is a representative of the parametric family of triangles T(m,n,k), whose columns are the coefficients of the standard expansion of the function f(x) = (-log(1-x))^(k)*exp(-m*x)/k! for the case m=1. See A381082. - Igor Victorovich Statsenko, Feb 14 2025

Examples

			Triangle starts:
   1;
  -1,  1;
   1, -1,  1;
  -1,  2,  0,  1;
   1,  0,  5,  2,  1;
  -1,  9, 15, 15,  5,  1;
   1, 35, 94, 85, 40,  9,  1.
		

Crossrefs

Columns k=0..4 give A033999, A002741, A381064, A381065, A381066.
Cf. A000166 (row sums), A080956 (diag n,n-1).
KummerU(-n,1-n-x,z): this sequence (z=-1), A094816 (z=1), |A137346| (z=2), A327997 (z=3).

Programs

  • Maple
    A269953 := (n,k) -> add(binomial(-j-1,-n-1)*abs(Stirling1(j,k)), j=0..n):
    seq(print(seq(A269953(n, k), k=0..n)), n=0..9);
    # Alternative:
    egf := exp(-t)*(1-t)^(-x): ser := series(egf, t, 12): p := n -> coeff(ser, t, n):
    seq(n!*seq(coeff(p(n), x, k), k=0..n), n=0..9); # Peter Luschny, Oct 28 2019
  • Mathematica
    Flatten[Table[Sum[Binomial[-j-1,-n-1] Abs[StirlingS1[j,k]], {j,0,n}], {n,0,9},{k,0,n}]]
    (* Or: *)
    p [n_] := HypergeometricU[-n, 1 - n - x, -1];
    Table[CoefficientList[p[n], x], {n, 0, 9}] (* Peter Luschny, Oct 28 2019 *)

Formula

From Wolfdieter Lang, Jun 19 2017: (Start)
E.g.f. of row polynomials R(n, x) = Sum_{k=0..n} T(n,k)*x^k: exp(-t)/(1 - t)^x.
E.g.f. of column k sequence: exp(-x)*(-log(1-x))^k/k!, k >= 0. (End)
From Peter Bala, Oct 26 2019: (Start)
Let R(n, x) = (-1)^n*Sum_{k >= 0} binomial(n,k)*k!* binomial(-x,k) the n-th row polynomial of this triangle.
R(n, x) = c_n(-x;-1), where c_n(x;a) denotes the n-th Poisson Charlier polynomial.
The series representation e = Sum_{k >= 0} 1/k! is the case n = 0 of the more general result e = n!*Sum_{k >= 0} 1/(k!*R(n,k)*R(n,k+1)), n = 0,2,3,4,.... (End)
R(n, x) = KummerU(-n, 1-n-x, -1). - Peter Luschny, Oct 28 2019

A072575 Triangle T(n,k) of number of compositions (ordered partitions) of n into distinct parts where largest part is exactly k, 1<=k<=n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 0, 2, 1, 0, 0, 2, 2, 1, 0, 0, 6, 2, 2, 1, 0, 0, 0, 8, 2, 2, 1, 0, 0, 0, 6, 8, 2, 2, 1, 0, 0, 0, 6, 8, 8, 2, 2, 1, 0, 0, 0, 24, 12, 8, 8, 2, 2, 1, 0, 0, 0, 0, 30, 14, 8, 8, 2, 2, 1, 0, 0, 0, 0, 30, 36, 14, 8, 8, 2, 2, 1, 0, 0, 0, 0, 24, 36, 38, 14, 8, 8, 2, 2, 1, 0, 0, 0, 0, 24, 54, 42, 38, 14, 8, 8, 2, 2, 1
Offset: 1

Views

Author

Henry Bottomley, Jun 21 2002

Keywords

Examples

			Rows start:
  1;
  0, 1;
  0, 2, 1;
  0, 0, 2, 1;
  0, 0, 2, 2, 1;
  0, 0, 6, 2, 2, 1;
  0, 0, 0, 8, 2, 2, 1;
  0, 0, 0, 6, 8, 2, 2, 1;
  ...
T(7,4)=8 since 7 can be written as 4+3 =4+2+1 =4+1+2 =3+4 =2+4+1 =2+1+4 =1+4+2 =1+2+4.
		

Crossrefs

Cf. A026836, A072574. Row sums are A032020. Column sums appear to be A001339 (offset). Starting terms of columns tend towards A072576 as k increases.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, [][], zip((x, y)->x+y, [b(n, i-1)],
          `if`(i>n, [], [0, b(n-i, i-1)]), 0)[]))
        end:
    T:= proc(n, k) local l; l:= [b(n-k, k-1)];
           add(l[i]*(i)!, i=1..nops(l))
        end:
    seq(seq(T(n, k), k=1..n), n=1..20);  # Alois P. Heinz, Nov 20 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1}, If[i<1, {}, Plus @@ PadRight[{b[n, i-1], If[i>n, {}, Join[{0}, b[n-i, i-1]]]}]]]; T[n_, k_] := Module[{l}, l = b[n-k, k-1]; Sum[l[[i]]*i!, {i, 1, Length[l]}]]; Table[Table [T[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Jan 31 2014, after Alois P. Heinz *)

A096341 E.g.f.: exp(x)/(1-x)^7.

Original entry on oeis.org

1, 8, 71, 694, 7421, 86276, 1084483, 14665106, 212385209, 3280842496, 53862855551, 936722974958, 17205245113141, 332864226563324, 6766480571358971, 144202473398010826, 3215159679583864433
Offset: 0

Views

Author

Philippe Deléham, Jun 28 2004

Keywords

Comments

Sum_{k=0..n} A094816(n,k)*x^k give A000522(n), A001339(n), A082030(n), A095000(n), A095177(n), A096307(n) for x = 1, 2, 3, 4, 5, 6 respectively.

Crossrefs

Cf. E.g.f. exp(x)/(1-x)^k: A000522 (k = 1), A001339 (k = 2), A082030 (k = 3), A095000 (k = 4), A095177 (k = 5), A096307 (k = 6).

Programs

  • Mathematica
    Table[HypergeometricPFQ[{7, -n}, {}, -1], {n, 0, 20}] (* Benedict W. J. Irwin, May 27 2016 *)
    With[{nn = 250}, CoefficientList[Series[Exp[x]/(1 - x)^7, {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = Sum_{k = 0..n} A094816(n, k)*7^k.
a(n) = Sum_{k = 0..n} binomial(n, k)*(k+6)!/6!.
a(n) = 2F0(7,-n;;-1). - Benedict W. J. Irwin, May 27 2016
From Peter Bala, Jul 26 2021: (Start)
a(n) = (n+7)*a(n-1) - (n-1)*a(n-2) with a(0) = 1 and a(1) = 8.
First-order recurrence: P(n-1)*a(n) = n*P(n)*a(n-1) + 1 with a(0) = 1, where P(n) = n^6 + 15*n^5 + 100*n^4 + 355*n^3 + 694*n^2 + 689*n + 265 = A094795(n).
(End)

A276588 Square array A(row,col) = Sum_{k=0..row} binomial(row,k)*(1+col+k)!, read by descending antidiagonals as A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), ...

Original entry on oeis.org

1, 2, 3, 6, 8, 11, 24, 30, 38, 49, 120, 144, 174, 212, 261, 720, 840, 984, 1158, 1370, 1631, 5040, 5760, 6600, 7584, 8742, 10112, 11743, 40320, 45360, 51120, 57720, 65304, 74046, 84158, 95901, 362880, 403200, 448560, 499680, 557400, 622704, 696750, 780908, 876809, 3628800, 3991680, 4394880, 4843440, 5343120, 5900520, 6523224, 7219974, 8000882, 8877691
Offset: 0

Views

Author

Antti Karttunen, Sep 19 2016

Keywords

Examples

			The top left corner of the array:
     1,     2,     6,     24,     120,      720,      5040,      40320
     3,     8,    30,    144,     840,     5760,     45360,     403200
    11,    38,   174,    984,    6600,    51120,    448560,    4394880
    49,   212,  1158,   7584,   57720,   499680,   4843440,   51932160
   261,  1370,  8742,  65304,  557400,  5343120,  56775600,  661933440
  1631, 10112, 74046, 622704, 5900520, 62118720, 718709040, 9059339520
		

Crossrefs

Transpose: A276589.
Topmost row (row 0): A000142, Row 1: A001048 (without its initial 2), Row 2: A001344 (from a(1) = 11 onward), Row 3: A001345 (from a(1) = 49 onward), Row 4: A001346 (from a(1) = 261 onward), Row 5: A001347 (from a(1) = 1631 onward).
Leftmost column (column 0): A001339, Column 1: A001340, Columns 2-3: A001341 & A001342 (apparently).
Cf. A276075.
Cf. also arrays A066117, A276586, A099884, A255483.

Programs

  • Mathematica
    T[r_, c_]:=Sum[Binomial[r, k](1 + c + k)!, {k, 0, r}]; Table[T[c, r - c], {r, 0, 10}, {c, 0, r}] // Flatten (* Indranil Ghosh, Apr 11 2017 *)
  • PARI
    T(r, c) = sum(k=0, r, binomial(r, k)*(1 + c + k)!);
    for(r=0, 10, for(c=0, r, print1(T(c, r - c),", ");); print();) \\ Indranil Ghosh, Apr 11 2017
    
  • Python
    from sympy import binomial, factorial
    def T(r, c): return sum([binomial(r, k) * factorial(1 + c + k) for k in range(r + 1)])
    for r in range(11): print([T(c, r - c) for c in range(r + 1)]) # Indranil Ghosh, Apr 11 2017
  • Scheme
    (define (A276588 n) (A276588bi (A002262 n) (A025581 n)))
    (define (A276588bi row col) (A276075 (A066117bi (+ 1 row) (+ 1 col)))) ;; Code for A066117bi given in A066117, and for A276075 under the respective entry.
    

Formula

A(row,col) = Sum_{k=0..row} binomial(row,k)*A000142(1+col+k).
A(row,col) = A276075(A066117(row+1,col+1)).

A377742 E.g.f. satisfies A(x) = exp(x) / (1 - x * A(x))^2.

Original entry on oeis.org

1, 3, 23, 331, 7133, 205901, 7470475, 326932299, 16768124217, 986753701657, 65548017270791, 4852285640543639, 396133183892522389, 35359325061987638661, 3426053898460864501251, 358128187005971803014211, 40172982580368589391407217, 4813677071886578522596221233
Offset: 0

Views

Author

Seiichi Manyama, Nov 05 2024

Keywords

Crossrefs

Programs

  • PARI
    a(n) = n!*sum(k=0, n, (k+1)^(n-k-1)*binomial(3*k+1, k)/(n-k)!);

Formula

a(n) = n! * Sum_{k=0..n} (k+1)^(n-k-1) * binomial(3*k+1,k)/(n-k)!.

A082430 a(1)=1; for n > 1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + 4.

Original entry on oeis.org

1, 6, 25, 132, 824, 5932, 48444, 442916, 4484524, 49828044, 602919332, 7892762164, 111156400476, 1675896499484, 26934050884564, 459674468429892, 8302870086014924, 158242935756990316, 3173649989348528004, 66813683986284800084, 1473241731897579841852
Offset: 1

Views

Author

Benoit Cloitre, Apr 24 2003

Keywords

Comments

More generally, if m is an integer and a(1)=1, a(n) = n*(a(n-1) + a(n-2) + ... + a(2) + a(1)) + m then a(n) has a closed form formula as a(n) = floor/ceiling(n*r(m)*n!) where r(m) = frac(e*m) + 0 or + 1/2 or -1/2 + integer. (See Example section.)

Examples

			r(10) = frac(10*e) + 1/2 + 2;
r(12) = frac(12*e) - 1/2 + 3;
r(15) = frac(15*e) + 3;
r(18) = frac(18*e) - 1/2 + 4.
		

Crossrefs

Programs

  • Mathematica
    nxt[{n_,t_,a_}]:=Module[{c=t(n+1)+4},{n+1,t+c,c}]; NestList[nxt,{1,1,1},20][[;;,3]] (* Harvey P. Dale, Mar 28 2024 *)

Formula

For n >= 2, a(n) = ceiling(n*(19/2 - 4*e)*n!).
From Seiichi Manyama, Apr 27 2025: (Start)
E.g.f.: -4 - 3*x/2 + (-19*x/2 + 4*exp(x))/(1-x)^2.
a(n) = -19*n/2 * n! + 4 * Sum_{k=0..n} (k+1)! * binomial(n,k) for n > 1.
a(n) = (n^2 * a(n-1) - 4)/(n-1) for n > 2.
a(n) = (n+2) * a(n-1) - (n-1) * a(n-2) for n > 3. (End)

A136104 A007318 * A002110; a(n) = Sum_{k=0..n} binomial(n,k)*A002110(k).

Original entry on oeis.org

1, 3, 11, 55, 375, 3731, 47743, 777771, 14770535, 331611235, 9205305591, 285781156343, 10308779559631, 418386835375575, 18097509979840775, 846748292083023991, 44182142790019823943, 2570069981187508600331, 157428743473326543397855, 10449715795107936675445215, 739751959772798881608189731
Offset: 0

Views

Author

Gary W. Adamson, Dec 14 2007

Keywords

Examples

			a(3) = 55 = (1, 3, 3, 1) dot (1, 2, 6, 30) = (1 + 6 + 18 + 30), where A002110 = (1, 2, 6, 30, 210, 2310, ...).
		

Crossrefs

Leftmost column of A276586.
Cf. also A001339, A121572.

Programs

  • Maple
    b:= proc(n) option remember; `if`(n=0, 1, ithprime(n)*b(n-1)) end:
    a:= n-> add(binomial(n, k)*b(k), k=0..n):
    seq(a(n), n=0..20);  # Alois P. Heinz, Sep 20 2016
  • Mathematica
    b[n_] := b[n] = If[n==0, 1, Prime[n]*b[n-1]]; a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

Binomial transform of primorial numbers, A002110.
a(n) = A276085(A007188(n)). - Antti Karttunen, Sep 18 2016

Extensions

A few more terms from L. Edson Jeffery, Apr 11 2011
Explicit binomial sum formula added to the name by Antti Karttunen, Sep 19 2016

A001340 E.g.f.: 2*exp(x)/(1-x)^3.

Original entry on oeis.org

2, 8, 38, 212, 1370, 10112, 84158, 780908, 8000882, 89763320, 1094915222, 14431179908, 204423631178, 3097603939952, 50001759773870, 856665220770332, 15526612798028258, 296825612428239848, 5969385443426556422, 125983618731675924020, 2784204907403441680442
Offset: 0

Views

Author

Keywords

Comments

a(n) = A001339 (n+1) - A001339 (n)..3-1=2, 11-3=8, 49-11=38... [Gary Detlefs, Jun 06 2010]

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    nn = 20; Range[0, nn]! CoefficientList[Series[2*Exp[x]/(1 - x)^3, {x, 0, nn}], x] (* T. D. Noe, Jun 28 2012 *)

Formula

a(n) = 2 * A082030(n).
a(n) = floor((n+1)*(n+1)!*e) - floor(n*n!*e) [Gary Detlefs, Jun 06 2010]
a(n) = {exp(1)*(n^2+n+1)*n!} for n>0, where {x} is the neareast integer, proposed by Simon Plouffe, March 1993.
G.f.: (1-x)/x/Q(0) -1/x, where Q(k)= 1 - x - x*(k+2)/(1 - x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 22 2013
G.f.: W(0)/x - 1/x, where W(k) = 1 - x*(k+2)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
Conjecture: a(n) +(-n-3)*a(n-1) +(n-1)*a(n-2)=0. - R. J. Mathar, May 03 2017

Extensions

Error in description corrected Jan 30 2008
More terms from N. J. A. Sloane, Jan 30 2008
Previous Showing 21-30 of 70 results. Next