A053500
Number of degree-n permutations of order dividing 10.
Original entry on oeis.org
1, 1, 2, 4, 10, 50, 220, 1240, 6140, 32860, 602200, 5668400, 62030200, 522328600, 4487190800, 62591332000, 715163146000, 9573774122000, 105731659828000, 1187355279592000, 29205778751300000, 481597207656340000, 9086318388933400000, 132525988426667120000
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^5/5 + x^10/10) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 2, 5, 10])))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] = If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, j-1}] *a[n-j], {j, {1, 2, 5, 10}}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 24 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^5/5 +x^10/10], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^5/5 + x^10/10) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^2/2 + x^5/5 + x^10/10), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A053501
Number of degree-n permutations of order dividing 11.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3628801, 43545601, 283046401, 1320883201, 4953312001, 15850598401, 44910028801, 115482931201, 274271961601, 609493248001, 1279935820801, 4644633666390681601, 106826520356358566401, 1281918194457262387201
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^11/11) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..j-1)*a(n-j), j=[1, 11])))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= n!*Sum[If[Mod[11*k-n, 10] == 0, Binomial[k, (11*k-n)/10]*11^((k-n)/10)/k!, 0], {k, 1, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 20 2014, after Vladimir Kruchinin *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^11/11], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
a(n):=n!*sum(if mod(11*k-n,10)=0 then binomial(k,(11*k-n)/10)*(11)^((k-n)/10)/k! else 0,k,1,n); /* Vladimir Kruchinin, Sep 10 2010 */
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x +x^11/11) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x +x^11/11), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A053503
Number of degree-n permutations of order dividing 16.
Original entry on oeis.org
1, 1, 2, 4, 16, 56, 256, 1072, 11264, 78976, 672256, 4653056, 49810432, 433429504, 4448608256, 39221579776, 1914926104576, 29475151020032, 501759779405824, 6238907914387456, 120652091860975616, 1751735807564578816, 29062253310781161472, 398033706586943258624
Offset: 0
- R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.10.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 15 2019
-
a:= proc(n) option remember; `if`(n<0, 0, `if`(n=0, 1,
add(mul(n-i, i=1..2^j-1)*a(n-2^j), j=0..4)))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Feb 14 2013
-
a[n_]:= a[n] =If[n<0, 0, If[n==0, 1, Sum[Product[n-i, {i, 1, 2^j-1}]* a[n-2^j], {j, 0, 4}]]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 19 2014, after Alois P. Heinz *)
With[{m = 30}, CoefficientList[Series[Exp[x +x^2/2 +x^4/4 +x^8/8 + x^16/16], {x, 0, m}], x]*Range[0, m]!] (* G. C. Greubel, May 15 2019 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16) )) \\ G. C. Greubel, May 15 2019
-
m = 30; T = taylor(exp(x + x^2/2 + x^4/4 + x^8/8 + x^16/16), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, May 15 2019
A055814
Expansion of e.g.f.: exp(x^3/3 + x^2/2).
Original entry on oeis.org
1, 0, 1, 2, 3, 20, 55, 210, 1225, 4760, 26145, 157850, 811195, 5345340, 35170135, 222472250, 1650073425, 12000388400, 88563700225, 720929459250, 5786843137075, 48072795270500, 424314078763575, 3731123025279650, 34084058218435225, 323768324084205000
Offset: 0
a(4) = 3 because there are 3 permutations of {1,2,3,4} that have cycle length two or three: (1,2)(3,4);(1,3)(2,4);(1,4)(2,3). - _Geoffrey Critzer_, Feb 21 2010
- Miklos Bona, A Walk Through Combinatorics, World Scientific Publishing Co., 2002, page 169. - Geoffrey Critzer, Feb 21 2010
-
a:=[1,0,1];; for n in [4..30] do a[n]:=(n-2)*(a[n-2]+(n-3)*a[n-3]); od; a; # G. C. Greubel, Jan 23 2020
-
I:=[1,0,1]; [n le 3 select I[n] else (n-2)*(Self(n-2) +(n-3)*Self(n-3)): n in [1..30]]; // G. C. Greubel, Jan 23 2020
-
a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)
*binomial(n-1, j-1)*(j-1)!, j=2..min(3, n)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Jan 25 2018
-
With[{m=30}, CoefficientList[Series[Exp[x^2/2 + x^3/3], {x,0,m}], x]*Range[0, m]!] (* Geoffrey Critzer, Feb 21 2010 *)
-
my(x='x+O('x^30)); Vec(serlaplace( exp(x^3/3 + x^2/2) )) \\ G. C. Greubel, Jan 23 2020
-
[factorial(n)*( exp(x^3/3 + x^2/2) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Jan 23 2020
A061134
Number of degree-n even permutations of order exactly 8.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 226800, 2494800, 29937600, 259459200, 1816214400, 10897286400, 301491590400, 4419628012800, 51209462304000, 482551041772800, 6979977625420800, 92611036249804800, 2078225819199129600
Offset: 1
Cf.
A000085,
A001470,
A001472,
A052501,
A053496 -
A053505,
A001189,
A001471,
A001473,
A061121 -
A061128,
A000704,
A061129 -
A061132,
A048099,
A051695,
A061133 -
A061135.
A061137
Number of degree-n odd permutations of order dividing 6.
Original entry on oeis.org
0, 0, 1, 3, 6, 30, 270, 1386, 6048, 46656, 387180, 2469060, 17204616, 158065128, 1903506696, 18887563800, 163657221120, 2095170230016, 30792968596368, 346564643468976, 3905503235814240, 58609511127871200, 866032039742528736
Offset: 0
Cf.
A000085,
A001470,
A001472,
A052501,
A053496-
A053505,
A001189,
A001471,
A001473,
A061121-
A061128,
A000704,
A061129-
A061132,
A048099,
A051695,
A061133-
A061135,
A001465,
A061136-
A061140.
-
m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x + x^3/3)*Sinh(x^2/2 + x^6/6) )); [0,0] cat [Factorial(n+1)*b[n]: n in [1..m-2]]; // G. C. Greubel, Jul 02 2019
-
Egf:= exp(x + x^3/3)*sinh(x^2/2 + x^6/6):
S:= series(Egf,x,31):
seq(coeff(S,x,j)*j!,j=0..30); # Robert Israel, Jul 13 2018
-
With[{m=30}, CoefficientList[Series[Exp[x + x^3/3]*Sinh[x^2/2 + x^6/6], {x, 0, m}], x]*Range[0,m]!] (* Vincenzo Librandi, Jul 02 2019 *)
-
my(x='x+O('x^30)); concat([0,0], Vec(serlaplace( exp(x + x^3/3)*sinh(x^2/2 + x^6/6) ))) \\ G. C. Greubel, Jul 02 2019
-
m = 30; T = taylor(exp(x + x^3/3)*sinh(x^2/2 + x^6/6), x, 0, m); [factorial(n)*T.coefficient(x, n) for n in (0..m)] # G. C. Greubel, Jul 02 2019
A245958
Number T(n,k) of endofunctions f on [n] satisfying f^3(i) = i for all i in [k]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 1, 1, 4, 2, 1, 27, 11, 5, 3, 256, 88, 36, 18, 9, 3125, 925, 335, 141, 57, 21, 46656, 12096, 3912, 1440, 516, 186, 81, 823543, 189679, 55377, 18279, 6003, 2079, 837, 351, 16777216, 3473408, 924160, 277824, 84624, 27672, 10116, 3690, 1233
Offset: 0
Triangle T(n,k) begins:
0 : 1;
1 : 1, 1;
2 : 4, 2, 1;
3 : 27, 11, 5, 3;
4 : 256, 88, 36, 18, 9;
5 : 3125, 925, 335, 141, 57, 21;
6 : 46656, 12096, 3912, 1440, 516, 186, 81;
7 : 823543, 189679, 55377, 18279, 6003, 2079, 837, 351;
...
-
with(combinat): M:=multinomial:
T:= proc(n, k) local l, g; l, g:= [1, 3],
proc(k, m, i, t) option remember; local d, j; d:= l[i];
`if`(i=1, n^m, add(M(k, k-(d-t)*j, (d-t)$j)/j!*
(d-1)!^j *M(m, m-t*j, t$j) *g(k-(d-t)*j, m-t*j,
`if`(d-t=1, [i-1, 0], [i, t+1])[]), j=0..min(k/(d-t),
`if`(t=0, [][], m/t))))
end; g(k, n-k, nops(l), 0)
end:
seq(seq(T(n, k), k=0..n), n=0..12);
-
M[n_, m_, k_List] := n!/Times @@ (Join[{m}, k]!);
T[0, 0] = 1; T[n_, k_] := T[n, k] = Module[{l = {1, 3}, g}, g[k0_, m_, {i_, t_}] := g[k0, m, i, t]; g[k0_, m_, i_, t_] := g[k0, m, i, t] = Module[ {d}, d = l[[i]]; If[i == 1, n^m, Sum[M[k0, k0 - (d-t)*j, Table[(d-t), {j}]]/j!*(d-1)!^j*M[m, m - t*j, Table[t, {j}]]*g[k0 - (d-t)*j, m - t*j, If[d-t == 1, {i-1, 0}, {i, t+1}]], {j, 0, Min[k0/(d-t), If[t == 0, Infinity, m/t]]}]]]; g[k, n-k, Length[l], 0]];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 03 2019, after Alois P. Heinz *)
A293588
E.g.f.: exp(x + x^6/6).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 121, 841, 3361, 10081, 25201, 55441, 6763681, 86692321, 605765161, 3027624601, 12109056961, 41169011521, 5063607974881, 94197184734241, 939457659787201, 6572292677455681, 36141156689382361, 166238526616664041, 20612479896229156321
Offset: 0
-
F:= Factorial;
[(&+[ F(n)/(6^k*F(k)*F(n-6*k)): k in [0..Floor(n/3)]]): n in [0..30]]; // G. C. Greubel, Mar 07 2021
-
With[{nn=30},CoefficientList[Series[Exp[x+x^6/6],{x,0,nn}],x] Range[ 0,nn]!] (* Harvey P. Dale, Dec 11 2017 *)
Table[Sum[n!/(6^k*k!*(n-6*k)!), {k, 0, n/6}], {n, 0, 30}] (* G. C. Greubel, Mar 07 2021 *)
-
my(x = 'x + O('x^30)); Vec(serlaplace(exp(x + x^6/6))) \\ Michel Marcus, Oct 13 2017
-
f=factorial;
[sum( f(n)/(6^k*f(k)*f(n-6*k)) for k in [0..n/3]) for n in [0..30]] # G. C. Greubel, Mar 07 2021
A362390
E.g.f. satisfies A(x) = exp(x + x^3/3 * A(x)).
Original entry on oeis.org
1, 1, 1, 3, 17, 81, 441, 3641, 33825, 318753, 3505521, 45095601, 616484001, 9013086369, 145909533225, 2556431401161, 47388760825281, 937507626246081, 19840711661183457, 443937299529447009, 10456231167451597761, 259738234024404363201
Offset: 0
A344912
Irregular triangle read by rows, Trow(n) = Seq_{k=0..n/3} Seq_{j=0..n-3*k} (n! * binomial(n - 3*k, j)) / (k!*(n - 3*k)!*3^k).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 2, 1, 4, 6, 4, 1, 8, 8, 1, 5, 10, 10, 5, 1, 20, 40, 20, 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40, 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280, 1, 8, 28, 56, 70, 56, 28, 8, 1, 112, 560, 1120, 1120, 560, 112, 1120, 2240, 1120
Offset: 0
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 3, 1, 2;
[4] 1, 4, 6, 4, 1, 8, 8;
[5] 1, 5, 10, 10, 5, 1, 20, 40, 20;
[6] 1, 6, 15, 20, 15, 6, 1, 40, 120, 120, 40, 40;
[7] 1, 7, 21, 35, 35, 21, 7, 1, 70, 280, 420, 280, 70, 280, 280.
.
p_{6}(x, y) = x^6 + 6*x^5*y + 15*x^4*y^2 + 20*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + y^6 + 40*x^3 + 120*x^2*y + 120*x*y^2 + 40*y^3 + 40.
-
B := (n, k) -> n!/(k!*(n - 3*k)!*(3^k)): C := n -> seq(binomial(n, j), j=0..n):
T := (n, k) -> B(n, k)*C(n - 3*k): seq(seq(T(n, k), k = 0..n/3), n = 0..8);
-
gf := Exp[t^3 / 3] Exp[t (x + y)]; ser := Series[gf, {t, 0, 9}];
P[n_] := Expand[n! Coefficient[ser, t, n]];
DegLexList[p_] := MonomialList[p, {x, y}, "DegreeLexicographic"] /. x->1 /. y->1;
Table[DegLexList[P[n]], {n, 0, 7}] // Flatten
Comments