cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 239 results. Next

A020893 Squarefree sums of two squares; or squarefree numbers with no prime factors of the form 4k+3.

Original entry on oeis.org

1, 2, 5, 10, 13, 17, 26, 29, 34, 37, 41, 53, 58, 61, 65, 73, 74, 82, 85, 89, 97, 101, 106, 109, 113, 122, 130, 137, 145, 146, 149, 157, 170, 173, 178, 181, 185, 193, 194, 197, 202, 205, 218, 221, 226, 229, 233, 241, 257, 265, 269, 274, 277, 281, 290, 293, 298, 305, 313, 314, 317, 337, 346, 349
Offset: 1

Views

Author

Keywords

Comments

Primitively but not imprimitively represented by x^2 + y^2.
The disjoint union of {1}, A003654, and A031398. - Max Alekseyev, Mar 09 2010
Squarefree members of A202057. - Artur Jasinski, Dec 10 2011
Union of A231754 and 2*A231754. Squarefree numbers whose prime factors are in A002313. - Robert Israel, Aug 23 2017
It appears that a(n) is the n-th index, k, such that f(k) = 2, where f(k) = 3*(Sum_{i=1..k} floor(i^2/k)) - k^2 (see A175908). - John W. Layman, May 16 2011

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988; see page 123.

Crossrefs

Programs

  • Haskell
    a020893 n = a020893_list !! (n-1)
    a020893_list = filter (\x -> any (== 1) $ map (a010052 . (x -)) $
                                 takeWhile (<= x) a000290_list) a005117_list
    -- Reinhard Zumkeller, May 28 2015
    
  • Maple
    N:= 1000: # to get all terms <= N
    R:= {1,2}:
    p:= 2:
    do
    p:= nextprime(p);
    if p > N then break fi;
    if p mod 4 <> 1 then next fi;
    R:= R union select(`<=`,map(`*`,R,p),N);
    od:
    sort(convert(R,list)); # Robert Israel, Aug 23 2017
  • Mathematica
    lim = 17; t = Join[{1}, Select[Union[Flatten[Table[x^2 + y^2, {x, lim}, {y, x}]]], # < lim^2 && SquareFreeQ[#] &]]
    Select[Union[Total/@Tuples[Range[0,20]^2,2]],SquareFreeQ] (* Harvey P. Dale, Jul 26 2017 *)
    Block[{nn = 350, p}, p = {1, 2}~Join~Select[Prime@ Range@ PrimePi@ nn, Mod[#, 4] == 1 &]; Select[Range@ nn, And[SquareFreeQ@ #, SubsetQ[p, FactorInteger[#][[All, 1]]]] &]] (* Michael De Vlieger, Aug 23 2017 *)
    (* or *)
    Select[Range[350], SquareFreeQ@ # && ! MemberQ[Mod[First /@ FactorInteger@ #, 4], 3] &] (* Giovanni Resta, Aug 25 2017 *)
  • PARI
    is(n)=my(f=factor(n)); for(i=1,#f~,if(f[i,2]>1 || f[i,1]%4==3, return(0))); 1 \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A020893_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 and e == 1 for p, e in factorint(n).items()),count(1))
    A020893_list = list(islice(A020893_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

a(n) ~ k*n*sqrt(log n), where k = 2.1524249... = A013661/A064533. - Charles R Greathouse IV, Apr 20 2015

Extensions

Edited by N. J. A. Sloane, Aug 30 2017

A057961 Number of points in square lattice covered by a disc centered at (0,0) as its radius increases.

Original entry on oeis.org

1, 5, 9, 13, 21, 25, 29, 37, 45, 49, 57, 61, 69, 81, 89, 97, 101, 109, 113, 121, 129, 137, 145, 149, 161, 169, 177, 185, 193, 197, 213, 221, 225, 233, 241, 249, 253, 261, 277, 285, 293, 301, 305, 317, 325, 333, 341, 349, 357, 365, 373, 377, 385, 401, 405, 421
Offset: 1

Views

Author

Ken Takusagawa, Oct 15 2000

Keywords

Comments

Useful for rasterizing circles.
Conjecture: the number of lattice points in a quadrant of the disk is equal to A000592(n-1). - L. Edson Jeffery, Feb 10 2014

Examples

			a(2)=5 because (0,0); (0,1); (0,-1); (1,0); (-1,0) are covered by any disc of radius between 1 and sqrt(2).
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 106.

Crossrefs

Cf. A004018, A004020, A005883, A057962. Distinct terms of A057655.

Programs

  • Mathematica
    max = 100; A001481 = Select[Range[0, 4*max], SquaresR[2, #] != 0 &]; Table[SquaresR[2, A001481[[n]]], {n, 1, max}] // Accumulate (* Jean-François Alcover, Oct 04 2013 *)

A336820 A(n,k) is the n-th number that is a sum of at most k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 3, 5, 5, 0, 1, 2, 3, 8, 8, 6, 0, 1, 2, 3, 4, 9, 9, 7, 0, 1, 2, 3, 4, 16, 10, 10, 8, 0, 1, 2, 3, 4, 5, 17, 16, 13, 9, 0, 1, 2, 3, 4, 5, 32, 18, 17, 16, 10, 0, 1, 2, 3, 4, 5, 6, 33, 19, 24, 17, 11, 0, 1, 2, 3, 4, 5, 6, 64, 34, 32, 27, 18, 12
Offset: 1

Views

Author

Alois P. Heinz, Aug 04 2020

Keywords

Examples

			Square array A(n,k) begins:
   0,  0,  0,  0,  0,  0,   0,   0,   0,  0,  0, ...
   1,  1,  1,  1,  1,  1,   1,   1,   1,  1,  1, ...
   2,  2,  2,  2,  2,  2,   2,   2,   2,  2,  2, ...
   3,  4,  3,  3,  3,  3,   3,   3,   3,  3,  3, ...
   4,  5,  8,  4,  4,  4,   4,   4,   4,  4,  4, ...
   5,  8,  9, 16,  5,  5,   5,   5,   5,  5,  5, ...
   6,  9, 10, 17, 32,  6,   6,   6,   6,  6,  6, ...
   7, 10, 16, 18, 33, 64,   7,   7,   7,  7,  7, ...
   8, 13, 17, 19, 34, 65, 128,   8,   8,  8,  8, ...
   9, 16, 24, 32, 35, 66, 129, 256,   9,  9,  9, ...
  10, 17, 27, 33, 36, 67, 130, 257, 512, 10, 10, ...
		

Crossrefs

A(n+j,n) for j=0-3 give: A001477(n-1), A000027, A000079, A000051.
Cf. A336725.

Programs

  • Maple
    A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end,
          proc(n, k) option remember; local b; b:=
            proc(x, y) option remember; `if`(x<0 or y<1, {},
              {0, b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]})
            end;
            while nops(w(k)) < n do forget(b);
              l(k):= [l(k)[], (nops(l(k))+1)^k];
              w(k):= sort([select(h-> h
    				
  • Mathematica
    b[n_, k_, i_, t_] := b[n, k, i, t] = n == 0 || i > 0 && t > 0 && (b[n, k, i - 1, t] || i^k <= n && b[n - i^k, k, i, t - 1]);
    A[n_, k_] := A[n, k] = Module[{m}, For[m = 1 + If[n == 1, -1, A[n - 1, k]], !b[m, k, m^(1/k) // Floor, k], m++]; m];
    Table[A[n, 1+d-n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, Dec 03 2020, using Alois P. Heinz's code for columns *)

Formula

A(n,k) = n-1 for n <= k+1.

A018786 Numbers that are the sum of two 4th powers in more than one way.

Original entry on oeis.org

635318657, 3262811042, 8657437697, 10165098512, 51460811217, 52204976672, 68899596497, 86409838577, 138519003152, 160961094577, 162641576192, 264287694402, 397074160625, 701252453457, 823372979472, 835279626752
Offset: 1

Views

Author

Keywords

Comments

Since 4th powers are squares, this is a subsequence of A024508, the analog for squares. Sequence A001235 is the analog for third powers (taxicab numbers). Sequence A255351 lists max {a,b,c,d} where a^4 + b^4 = c^4 + d^4 = a(n), while A255352 lists the whole quadruples (a,b,c,d). - M. F. Hasler, Feb 21 2015

Examples

			a(1) = 59^4 + 158^4 = 133^4 + 134^4.
a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - _M. F. Hasler_, Feb 21 2015
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, D1.

Crossrefs

Subsequence of A003336 (and hence A004831) and A024508 (and hence A001481).

Programs

  • Mathematica
    Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* Jean-François Alcover, Jul 26 2011 *)
  • PARI
    n=4;L=[];for(b=1,999,for(a=1,b,t=a^n+b^n;for(c=a+1,sqrtn(t\2,n),ispower(t-c^n,n)||next;print1(t",")))) \\ M. F. Hasler, Feb 21 2015
    
  • PARI
    list(lim)=my(v=List()); for(a=134,sqrtnint(lim,4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a,4)+1,min(sqrtnint(lim-a4,4),a), my(t=a4+b^4); for(c=a+1,sqrtnint(lim,4), if(ispower(t-c^4,4), listput(v,t); break)))); Set(v) \\ Charles R Greathouse IV, Jul 12 2024

Formula

A weak lower bound: a(n) >> n^2. - Charles R Greathouse IV, Jul 12 2024

A216451 Numbers which are simultaneously of the form x^2+y^2, x^2+2y^2, x^2+3y^2, x^2+7y^2, all with x>0, y>0.

Original entry on oeis.org

193, 337, 457, 673, 772, 1009, 1033, 1129, 1201, 1297, 1348, 1737, 1801, 1828, 1873, 2017, 2137, 2377, 2473, 2521, 2689, 2692, 2713, 2857, 3033, 3049, 3088, 3217, 3313, 3361, 3529, 3600, 3697, 3889, 4036, 4057, 4113, 4132, 4153, 4201, 4516, 4561, 4624, 4657
Offset: 1

Views

Author

V. Raman, Sep 07 2012

Keywords

Comments

A number can be written as a^2+b^2 if and only if it has no prime factor congruent to 3 (mod 4) raised to an odd power.
A number can be written as a^2+2*b^2 if and only if it has no prime factor congruent to 5 (mod 8) or 7 (mod 8) raised to an odd power.
A number can be written as a^2+3*b^2 if and only if it has no prime factor congruent to 2 (mod 3) raised to an odd power.
A number can be written as a^2+7*b^2 if and only if it has no prime factor congruent to 3 (mod 7) or 5 (mod 7) or 6 (mod 7) raised to an odd power. Also the power of 2 should not be 1, if it can be written in the form a^2+7*b^2.

Crossrefs

Intersection of A001481, A002479, A003136 and A020670, omitting squares. See also A216500. - N. J. A. Sloane, Sep 11 2012

Programs

  • Mathematica
    nn = 4657; lim = Floor[Sqrt[nn]]; t1 = Select[Union[Flatten[Table[a^2 + b^2, {a, lim}, {b, lim}]]], # <= nn &]; t2 = Select[Union[Flatten[Table[a^2 + 2*b^2, {a, lim}, {b, lim/Sqrt[2]}]]], # <= nn &]; t3 = Select[Union[Flatten[Table[a^2 + 3*b^2, {a, lim}, {b, lim/Sqrt[3]}]]], # <= nn &]; t7 = Select[Union[Flatten[Table[a^2 + 7*b^2, {a, lim}, {b, lim/Sqrt[7]}]]], # <= nn &]; Intersection[t1, t2, t3, t7] (* T. D. Noe, Sep 08 2012 *)

Extensions

Definition clarified by N. J. A. Sloane, Sep 11 2012

A234300 Number of unit squares, aligned with a Cartesian grid, partially encircled along the edge of the first quadrant of a circle centered at the origin ordered by increasing radius.

Original entry on oeis.org

0, 1, 1, 3, 2, 3, 3, 5, 3, 5, 4, 5, 5, 7, 5, 7, 5, 7, 7, 9, 7, 9, 8, 9, 7, 9, 7, 11, 9, 11, 9, 11, 10, 11, 9, 11, 11, 13, 11, 13, 11, 13, 11, 13, 11, 13, 13, 15, 12, 15, 13, 15, 13, 15, 13, 15, 13, 15, 15, 17, 13, 17, 15, 17, 16, 17, 15, 17, 15, 17, 15, 17, 17, 19, 17, 19, 15, 19, 17, 19, 17, 19, 17, 19, 18, 19, 17, 21, 19, 21, 19, 21, 19, 21, 19, 21, 19, 21, 19, 21
Offset: 0

Views

Author

Rajan Murthy, Dec 22 2013

Keywords

Comments

The first decrease from a(4) = 3 to a(5) = 2 occurs when the radius squared increases from an arbitrary position between 1 and 2 (when 3 squares are on the edge) to exactly 2 (when only 2 squares are on the edge because the circle of square radius 2 passes through the upper right corner on the y=x line). Similar decreases occur when the circle passes through other upper right corners. At least some (if not all) adjacent duplicates occur when the square radius corresponds to a perfect square, that is a corner which is only a lower right corner, i.e., on the y = 0 line. For example, a(6)=a(7)=3 occurs when, for n = 6 , a(n) corresponding to the interval between 2 and 4; and, for n=7, a(n) corresponding to the exact square radius of 4. Some of the confusion may come from the fact that for odd n, there is a unique circle corresponding to elements of a(n) (passing through the corner of specific square(s) on the grid), while for even n, there is a set of circles with a range of radii (which do not pass through corners) corresponding to the elements of a(n). It seems easier to organize the concept in terms of intervals and corners for the sake of consistency.
a(n) is even when the radius squared corresponds to an element of A024517.

Examples

			At radius 0, there are no partially filled squares.  At radius >1 but < sqrt(2), there are 3 partially filled squares along the edge of the circle.  At radius = sqrt(2), there are 2 partially filled squares along the edge of the circle.
		

Crossrefs

Cf. A001481 (corresponds to the square radius of alternate entries), A232499 (number of completely encircled squares when the radii are indexed by A000404), A235141 (first differences), A024517.
A237708 is the analog for the 3-dimensional Cartesian lattice and A239353 for the 4-dimensional Cartesian lattice.

Programs

  • Scilab
    function index = n_edgeindex (N)
        if N < 1 then
            N = 1
        end
        N = floor(N)
        i = 0:ceil(N/2)
        i = i^2
        index = i
        for j = 1:length(i)
           index = [index i+ i(j).*ones(i)]
        end
        index = unique(index)
        index = index(1:ceil(N))
        d = diff(index)/2
        d = d +  index(1:length(d))
        index = gsort([index d],"g","i")
        index = index(1:N)
    endfunction
    function l = n_edge_n (i)
            l=0
            h=0
            while (i > (2*h^2))
                h=h+1
            end
            if i < (2*h^2) then
                    l = l+1
            end
            if i >1 then
                t=[0 1]
               while (i>max(t))
                   t = [t (sqrt(max(t))+1)^2]
               end
            for j = 1:h
               b=t
               t=[2*(j)^2 (j+1)^2 + (j)^2]
               while (i>max(t))
                   t = [t (sqrt(max(t)-(j)^2)+1)^2 + (j)^2]
               end
               l = l+ 2*(length(b)-length(t))
               if max(t) == i then
                   l = l-2
               end
            end
           end
    endfunction
    function a =n_edge (N)
        if N <1 then
            N =1
        end
        N = floor(N)
        a= []
        index = n_edgeindex(N)
        for i = index
            a = [a n_edge_n(i)]
        end
    endfunction

Formula

a(2k+1) = a(2k) + 2*A000161(A001481(k+1)) - A010052(A001481(k+1)/2). - Rajan Murthy, Jan 14 2013
a(2k) = a(2k-1) - 2*(A000161(A001481(k+1)) - A010052(A001481(k+1))) + A010052(A001481(k+1)/2). - Rajan Murthy, Jan 14 2013

A262311 Number of ordered ways to write n = x^2 + y^2 + phi(z^2) (0 <= x <= y and z > 0) with y or z prime, where phi(.) is Euler's totient function given by A000010.

Original entry on oeis.org

0, 1, 1, 1, 1, 3, 2, 1, 1, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 3, 3, 4, 1, 2, 2, 3, 3, 2, 1, 3, 3, 1, 2, 2, 2, 3, 4, 4, 1, 3, 2, 6, 3, 2, 4, 4, 3, 1, 3, 4, 5, 5, 3, 3, 3, 4, 4, 8, 4, 3, 5, 4, 2, 2, 3, 6, 6, 1, 2, 5, 3, 2, 4, 5, 2, 2, 2, 3, 3, 2, 3, 6, 3, 2, 3, 3, 4, 4, 3, 3, 4, 5, 4, 3, 3, 1, 4, 3, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Oct 01 2015

Keywords

Comments

Conjecture: a(n) > 0 for all n > 1.
I have verified this for n up to 10^6, and found that a(n) = 1 for the following 67 values of n: 2, 3, 4, 5, 8, 9, 13, 23, 29, 32, 39, 48, 68, 96, 108, 140, 144, 215, 264, 268, 324, 328, 384, 396, 404, 460, 471, 476, 500, 503, 684, 716, 759, 764, 768, 788, 860, 908, 936, 1032, 1076, 1112, 1148, 1164, 1259, 1344, 1399, 1443, 1484, 1503, 1551, 1839, 1868, 2088, 2723, 2883, 3744, 4296, 5963, 6804, 8328, 9680, 10331, 11948, 21524, 39716, 94415. It seems that a(n) = 1 for no other values of n.
It is easy to see that all the numbers phi(n^2) = n*phi(n) (n = 1,2,3,...) are pairwise distinct.
See also A262781 for a similar conjecture.

Examples

			a(2) = 1 since 2 = 0^2 + 0^2 + phi(2^2) with 2 prime.
a(5) = 1 since 5 = 0^2 + 2^2 + phi(1^2) with 2 prime.
a(23) = 1 since 23 = 1^2 + 4^2 + phi(3^2) with 3 prime.
a(29) = 1 since 29 = 0^2 + 3^2 + phi(5^2) with 3 and 5 both prime.
a(48) = 1 since 48 = 2^2 + 2^2 + phi(10^2) with 2 prime.
a(96) = 1 since 96 = 3^2 + 9^2 + phi(3^2) with 3 prime.
a(140) = 1 since 140 = 7^2 + 7^2 + phi(7^2) with 7 prime.
a(471) = 1 since 471 = 0^2 + 19^2 + phi(11^2) with 19 and 11 both prime.
a(476) = 1 since 476 = 8^2 + 16^2 + phi(13^2) with 13 prime.
a(936) = 1 since 936 = 4^2 + 30^2 + phi(5^2) with 5 prime.
a(1112) = 1 since 1112 = 23^2 + 23^2 + phi(9^2) with 23 prime.
a(1839) = 1 since 1839 = 3^2 + 30^2 + phi(31^2) with 31 prime.
a(1868) = 1 since 1868 = 2^2 + 2^2 + phi(62^2) with 2 prime.
a(2088) = 1 since 2088 = 15^2 + 39^2 + phi(19^2) with 19 prime.
a(2723) = 1 since 2723 = 34^2 + 35^2 + phi(19^2) with 19 prime.
a(2883) = 1 since 2883 = 21^2 + 44^2 + phi(23^2) with 23 prime.
a(3744) = 1 since 3744 = 4^2 + 54^2 + phi(29^2) with 29 prime.
a(4296) = 1 since 4296 = 26^2 + 60^2 + phi(5^2) with 5 prime.
a(5963) = 1 since 5963 = 26^2 + 59^2 + phi(43^2) with 59 and 43 both prime.
a(6804) = 1 since 6804 = 40^2 + 72^2 + phi(5^2) with 5 prime.
a(8328) = 1 since 8328 = 1^2 + 39^2 + phi(83^2) with 83 prime.
a(9680) = 1 since 9680 = 68^2 + 70^2 + phi(13^2) with 13 prime.
a(10331) = 1 since 10331 = 17^2 + 100^2 + phi(7^2) with 7 prime.
a(11948) = 1 since 11948 = 5^2 + 109^2 + phi(7^2) with 109 and 7 both prime.
a(21524) = 1 since 21524 = 59^2 + 109^2 + phi(79^2) with 109 and 79 both prime.
a(39716) = 1 since 39716 = 5^2 + 17^2 + phi(199^2) with 17 and 199 both prime.
a(94415) = 1 since 94415 = 115^2 + 178^2 + phi(223^2) with 223 prime.
		

Crossrefs

Programs

  • Mathematica
    SQ[n_]:=IntegerQ[Sqrt[n]]
    f[n_]:=EulerPhi[n^2]
    Do[r=0;Do[If[f[z]>n,Goto[aa]];Do[If[SQ[n-f[z]-x^2]&&(PrimeQ[z]||PrimeQ[Sqrt[n-f[z]-x^2]]),r=r+1],{x,0,Sqrt[(n-f[z])/2]}];Label[aa];Continue,{z,1,n}];Print[n," ",r];Continue,{n,1,100}]

A069011 Triangle with T(n,k) = n^2 + k^2.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 18, 16, 17, 20, 25, 32, 25, 26, 29, 34, 41, 50, 36, 37, 40, 45, 52, 61, 72, 49, 50, 53, 58, 65, 74, 85, 98, 64, 65, 68, 73, 80, 89, 100, 113, 128, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200
Offset: 0

Views

Author

Henry Bottomley, Apr 02 2002

Keywords

Comments

For any i,j >=0 a(i)*a(j) is a member of this sequence, since (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2. - Boris Putievskiy, May 05 2013
A227481(n) = number of squares in row n. - Reinhard Zumkeller, Oct 11 2013
Norm of the complex numbers n +- i*k and k +- i*n, where i denotes the imaginary unit. - Stefano Spezia, Aug 07 2025

Examples

			Triangle T(n,k) begins:
    0;
    1,   2;
    4,   5,   8;
    9,  10,  13,  18;
   16,  17,  20,  25,  32;
   25,  26,  29,  34,  41,  50;
   36,  37,  40,  45,  52,  61,  72;
   49,  50,  53,  58,  65,  74,  85,  98;
   64,  65,  68,  73,  80,  89, 100, 113, 128;
   81,  82,  85,  90,  97, 106, 117, 130, 145, 162;
  100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200;
  ...
		

Crossrefs

Cf. A001481 for terms in this sequence, A000161 for number of times each term appears, A048147 for square array.
Column k=0 gives A000290.
Main diagonal gives A001105.
Row sums give A132124.
T(2n,n) gives A033429.

Programs

  • Haskell
    a069011 n k = a069011_tabl !! n !! k
    a069011_row n = a069011_tabl !! n
    a069011_tabl = map snd $ iterate f (1, [0]) where
       f (i, xs@(x:_)) = (i + 2, (x + i) : zipWith (+) xs [i + 1, i + 3 ..])
    -- Reinhard Zumkeller, Oct 11 2013
  • Mathematica
    Table[n^2 + k^2, {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 07 2025 *)

Formula

T(n+1,k+1) = T(n,k) + 2*(n+k+1), k=0..n; T(n+1,0) = T(n,0) + 2*n + 1. - Reinhard Zumkeller, Oct 11 2013
G.f.: x*(1 + 2*y + 5*x^3*y^2 - x^2*y*(2 + 5*y) + x*(1 - 4*y + 2*y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Aug 04 2025

A125022 Numbers with a unique partition as the sum of 2 squares x^2 + y^2.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 26, 29, 32, 34, 36, 37, 40, 41, 45, 49, 52, 53, 58, 61, 64, 68, 72, 73, 74, 80, 81, 82, 89, 90, 97, 98, 101, 104, 106, 109, 113, 116, 117, 121, 122, 128, 136, 137, 144, 146, 148, 149, 153, 157, 160, 162, 164, 173, 178, 180, 181
Offset: 1

Views

Author

Artur Jasinski, Nov 16 2006

Keywords

Comments

A000161(a(n)) = 1. [Reinhard Zumkeller, Aug 16 2011]

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a125022 n = a125022_list !! (n-1)
    a125022_list = elemIndices 1 a000161_list
    -- Reinhard Zumkeller, Aug 16 2011
  • Mathematica
    Select[Range[0,200],Length@PowersRepresentations[#,2,2]==1&] (* Giorgos Kalogeropoulos, Mar 21 2021 *)

Formula

a(n) = A125021(n)/2.

Extensions

Name edited by Giorgos Kalogeropoulos, Mar 21 2021

A140612 Integers k such that both k and k+1 are the sum of 2 squares.

Original entry on oeis.org

0, 1, 4, 8, 9, 16, 17, 25, 36, 40, 49, 52, 64, 72, 73, 80, 81, 89, 97, 100, 116, 121, 136, 144, 145, 148, 169, 180, 193, 196, 225, 232, 233, 241, 244, 256, 260, 288, 289, 292, 305, 313, 324, 337, 360, 361, 369, 388, 400, 404, 409, 424, 441, 449, 457
Offset: 1

Views

Author

Keywords

Comments

Equivalently, nonnegative k such that k*(k+1) is the sum of two squares.
Also, nonnegative k such that k*(k+1)/2 is the sum of two squares. This follows easily from the "sum of two squares theorem": x is the sum of two (nonnegative) squares iff its prime factorization does not contain p^e where p == 3 (mod 4) and e is odd. - Robert Israel, Mar 26 2018
Trivially, sequence includes all positive squares.

Examples

			40 = 6^2 + 2^2, 41 = 5^2 + 4^2, so 40 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [k:k in [0..460]| forall{k+a: a in [0,1]|NormEquation(1, k+a) eq true}]; // Marius A. Burtea, Oct 08 2019
    
  • Mathematica
    (*M6*) A1 = {}; Do[If[SquaresR[2, n (n + 1)/2] > 0, AppendTo[A1, n]], {n, 0, 1500}]; A1
    Join[{0}, Flatten[Position[Accumulate[Range[500]], ?(SquaresR[2, #]> 0&)]]] (* _Harvey P. Dale, Jun 07 2015 *)
    SequencePosition[Table[If[SquaresR[2,n]>0,1,0],{n,0,500}],{1,1}] [[All,1]]-1 (* Harvey P. Dale, Jul 28 2021 *)
  • Python
    from itertools import count, islice, starmap
    from sympy import factorint
    def A140612_gen(startvalue=0): # generator of terms >= startvalue
        for k in count(max(startvalue,0)):
            if all(starmap(lambda d, e: e % 2 == 0 or d % 4 != 3, factorint(k*(k+1)).items())):
                yield k
    A140612_list = list(islice(A140612_gen(),20)) # Chai Wah Wu, Mar 07 2022

Extensions

a(1)=0 prepended and edited by Max Alekseyev, Oct 08 2019
Previous Showing 61-70 of 239 results. Next