A065923
Bessel polynomial y_n(-3).
Original entry on oeis.org
1, -2, 19, -287, 6046, -163529, 5402503, -210861146, 9494154073, -484412718869, 27621019129606, -1740608617884047, 120129615653128849, -9011461782602547722, 730048534006459494331, -63523233920344578554519, 5908390803126052265064598
Offset: 0
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
Polynomial coefficients are in
A001498.
-
f:= gfun:-rectoproc({a(n)= -(6*n-3)*a(n-1) + a(n-2),a(0)=1,a(1)=-2},a(n),remember):
map(f, [$0..50]); # Robert Israel, Aug 16 2017
-
Table[Pochhammer[1/2, n]*(-6)^n*Hypergeometric1F1[0 - n, -2*n, -2/3], {n, 0, 50}] (* G. C. Greubel, Aug 14 2017 *)
-
for(n=0,50, print1(sum(k=0,n, ((n+k)!/(k! * (n-k)!))*(-3/2)^k), ", ")) \\ G. C. Greubel, Aug 14 2017
A130563
Fourth column (m=3) of the Laguerre-Sonin a=1/2 coefficient triangle.
Original entry on oeis.org
1, 36, 990, 25740, 675675, 18378360, 523783260, 15713497800, 496939367925, 16564645597500, 581419060472250, 21459648959248500, 831561397170879375, 33774185977401870000, 1435402904039579475000, 63731888939357328690000
Offset: 3
-
[Round(Factorial(n)*2^(n-3)*Gamma(n+3/2)/(6*Gamma(n-2)*Gamma(9/2))): n in [3..20]]; // G. C. Greubel, May 12 2018
-
Table[n!*(2^(n - 3))*Binomial[n + 1/2, n - 3]/3!, {n, 3, 50}] (* G. C. Greubel, May 12 2018 *)
-
for(n=3, 20, print1(n!*(2^(n-3))*binomial(n+1/2, n-3)/3!, ", ")) \\ G. C. Greubel, May 12 2018
A133480
Left 3-step factorial (n,-3)!: a(n) = (-1)^n * A008544(n).
Original entry on oeis.org
1, -2, 10, -80, 880, -12320, 209440, -4188800, 96342400, -2504902400, 72642169600, -2324549427200, 81359229952000, -3091650738176000, 126757680265216000, -5577337931669504000, 262134882788466688000, -13106744139423334400000, 694657439389436723200000, -38900816605808456499200000
Offset: 0
-
[Round((-3)^n*Gamma(n+2/3)/Gamma(2/3)): n in [0..20]]; // G. C. Greubel, Mar 31 2019
-
Table[(-3)^n*Pochhammer[2/3, n], {n,0,20}] (* G. C. Greubel, Mar 31 2019 *)
-
vector(20, n, n--; round((-3)^n*gamma(n+2/3)/gamma(2/3))) \\ G. C. Greubel, Mar 31 2019
-
[(-3)^n*rising_factorial(2/3,n) for n in (0..20)] # G. C. Greubel, Mar 31 2019
A043302
Triangular table of 2^n *(n+k)! / ((n-k)! * k! * 4^k).
Original entry on oeis.org
1, 2, 1, 4, 6, 3, 8, 24, 30, 15, 16, 80, 180, 210, 105, 32, 240, 840, 1680, 1890, 945, 64, 672, 3360, 10080, 18900, 20790, 10395, 128, 1792, 12096, 50400, 138600, 249480, 270270, 135135, 256, 4608, 40320, 221760, 831600, 2162160, 3783780, 4054050
Offset: 1
1; 2, 1; 4, 6, 3; 8, 24, 30, 15; 16, 80, 180, 210, 105; ...
A065931
Triangle of coefficients of Bessel polynomials {y_n(x)}'.
Original entry on oeis.org
1, 3, 6, 6, 30, 45, 10, 90, 315, 420, 15, 210, 1260, 3780, 4725, 21, 420, 3780, 18900, 51975, 62370, 28, 756, 9450, 69300, 311850, 810810, 945945, 36, 1260, 20790, 207900, 1351350, 5675670, 14189175, 16216200, 45, 1980, 41580, 540540, 4729725, 28378350, 113513400, 275675400, 310134825
Offset: 1
For n = 1 .. 4 the polynomials are
(y_{1}(x))' = 1;
(y_{2}(x))' = 3 + 6*x;
(y_{3}(x))' = 6 + 30*x + 45*x^2;
(y_{4}(x))' = 10 + 90*x + 315*x^2 + 420*x^3.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
-
f:=Factorial;; Flat(List([1..12], n-> List([0..n-1], k-> (f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) ))); # G. C. Greubel, Jul 10 2019
-
f:=Factorial; [(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1): k in [0..n-1], n in [1..12]]; // G. C. Greubel, Jul 10 2019
-
Table[(n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), {n,1,12}, {k,0,n-1}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
-
for(n=1,12, for(k=0,n-1, print1((n+k+1)!/(k!*(n-k-1)!)*(1/2)^(k+1), ", "))) \\ G. C. Greubel, Jul 10 2019
-
f=factorial; [[(f(n+k+1)/(f(k)*f(n-k-1)))*(1/2)^(k+1) for k in (0..n-1)] for n in (1..12)] # G. C. Greubel, Jul 10 2019
A104548
Triangle read by rows giving coefficients of Bessel polynomial p_n(x).
Original entry on oeis.org
0, 1, 0, 1, 1, 0, 1, 3, 3, 0, 1, 6, 15, 15, 0, 1, 10, 45, 105, 105, 0, 1, 15, 105, 420, 945, 945, 0, 1, 21, 210, 1260, 4725, 10395, 10395, 0, 1, 28, 378, 3150, 17325, 62370, 135135, 135135, 0, 1, 36, 630, 6930, 51975, 270270, 945945, 2027025, 2027025, 0
Offset: 0
Bessel polynomials begin with:
x;
x + x^2;
3*x + 3*x^2 + x^3;
15*x + 15*x^2 + 6*x^3 + x^4;
105*x + 105*x^2 + 45*x^3 + 10*x^4 + x^5;
...
Triangle of coefficients begins as:
0;
1, 0;
1, 1 0;
1, 3, 3 0;
1, 6, 15, 15 0;
1, 10, 45, 105, 105 0;
1, 15, 105, 420, 945, 945 0;
1, 21, 210, 1260, 4725, 10395, 10395 0;
1, 28, 378, 3150, 17325, 62370, 135135, 135135 0;
Essentially the same as
A001498 (the main entry).
-
A104548:= func< n,k | k eq n select 0 else Binomial(n-1,k)*Factorial(n+k-1)/(2^k*Factorial(n-1)) >;
[A104548(n,k): k in [0..n], n in [0..13]]; // G. C. Greubel, Jan 02 2023
-
T[n_, k_]:= If[k==n, 0, Binomial[n-1,k]*(n+k-1)!/(2^k*(n-1)!)];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 02 2023 *)
-
def A104548(n,k): return 0 if (k==n) else binomial(n-1,k)*factorial(n+k-1)/(2^k*factorial(n-1))
flatten([[A104548(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 02 2023
A303986
Triangle of derivatives of the Niven polynomials evaluated at 0.
Original entry on oeis.org
1, 1, -2, 1, -6, 12, 1, -12, 60, -120, 1, -20, 180, -840, 1680, 1, -30, 420, -3360, 15120, -30240, 1, -42, 840, -10080, 75600, -332640, 665280, 1, -56, 1512, -25200, 277200, -1995840, 8648640, -17297280, 1, -72, 2520, -55440, 831600, -8648640, 60540480, -259459200, 518918400, 1, -90, 3960, -110880, 2162160, -30270240, 302702400, -2075673600, 8821612800, -17643225600, 1, -110, 5940, -205920, 5045040, -90810720, 1210809600, -11762150400, 79394515200, -335221286400, 670442572800
Offset: 0
The triangle T(n, k) begins:
n\k 0 1 2 3 4 5 6 7 8 ...
0: 1
1: 1 -2
2: 1 -6 12
3: 1 -12 60 -120
4: 1 -20 180 -840 1680
5: 1 -30 420 -3360 15120 -30240
6: 1 -42 840 -10080 75600 -332640 66528
7: 1 -56 1512 -25200 277200 -1995840 8648640 -17297280
8: 1 -72 2520 -55440 831600 -8648640 60540480 -259459200 518918400
...
- Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 116-125.
- Ivan Niven, Irrational Numbers, Math. Assoc. Am., John Wiley and Sons, New York, 2nd printing 1963, pp. 19-21.
-
Flat(List([0..10],n->List([0..n],k->(-1)^k*Binomial(n,n-k)*Factorial(n+k)/Factorial(n)))); # Muniru A Asiru, May 15 2018
-
T := (n, k) -> (-1)^k*pochhammer(n+1, k)*binomial(n, k):
seq(print(seq(T(n, k), k=0..n)), n=0..9); # Peter Luschny, May 11 2018
-
T(n,k)=(-1)^k*binomial(n,n-k)*binomial(n+k,n)*k! \\ M. F. Hasler, May 09 2018
A334823
Triangle, read by rows, of Lambert's denominator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 1, 0, 3, 0, -1, 15, 0, -6, 0, 105, 0, -45, 0, 1, 945, 0, -420, 0, 15, 0, 10395, 0, -4725, 0, 210, 0, -1, 135135, 0, -62370, 0, 3150, 0, -28, 0, 2027025, 0, -945945, 0, 51975, 0, -630, 0, 1, 34459425, 0, -16216200, 0, 945945, 0, -13860, 0, 45, 0, 654729075, 0, -310134825, 0, 18918900, 0, -315315, 0, 1485, 0, -1
Offset: 0
Polynomials:
f(0, x) = 1;
f(1, x) = x;
f(2, x) = 3*x^2 - 1;
f(3, x) = 15*x^3 - 6*x;
f(4, x) = 105*x^4 - 45*x^2 + 1;
f(5, x) = 945*x^5 - 420*x^3 + 15*x;
f(6, x) = 10395*x^6 - 4725*x^4 + 210*x^2 - 1;
f(7, x) = 135135*x^7 - 62370*x^5 + 3150*x^3 - 28*x;
f(8, x) = 2027025*x^8 - 945945*x^6 + 51975*x^4 - 630*x^2 + 1.
Triangle of coefficients begins as:
1;
1, 0;
3, 0, -1;
15, 0, -6, 0;
105, 0, -45, 0, 1;
945, 0, -420, 0, 15, 0;
10395, 0, -4725, 0, 210, 0, -1;
135135, 0, -62370, 0, 3150, 0, -28, 0;
2027025, 0, -945945, 0, 51975, 0, -630, 0, 1.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!);
seq(seq(T(n, k), k = 0 .. n), n = 0 .. 10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
f[n_, k_]:= Coefficient[((-I)^n/2)*(y[n, I*x] + (-1)^n*y[n, -I*x]), x, k];
Table[f[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[ I^k*(2*n-k)!*(1+(-1)^k)/(2^(n-k+1)*(k)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k)*(1+(-1)^k)/(2^(n-k+1)*factorial(k)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
A334824
Triangle, read by rows, of Lambert's numerator polynomials related to convergents of tan(x).
Original entry on oeis.org
1, 3, 0, 15, 0, -1, 105, 0, -10, 0, 945, 0, -105, 0, 1, 10395, 0, -1260, 0, 21, 0, 135135, 0, -17325, 0, 378, 0, -1, 2027025, 0, -270270, 0, 6930, 0, -36, 0, 34459425, 0, -4729725, 0, 135135, 0, -990, 0, 1, 654729075, 0, -91891800, 0, 2837835, 0, -25740, 0, 55, 0, 13749310575, 0, -1964187225, 0, 64324260, 0, -675675, 0, 2145, 0, -1
Offset: 0
Polynomials:
g(0, x) = 1;
g(1, x) = 3*x;
g(2, x) = 15*x^2 - 1;
g(3, x) = 105*x^3 - 10*x;
g(4, x) = 945*x^4 - 105*x^2 + 1;
g(5, x) = 10395*x^5 - 1260*x^3 + 21*x;
g(6, x) = 135135*x^6 - 17325*x^4 + 378*x^2 - 1;
g(7, x) = 2027025*x^7 - 270270*x^5 + 6930*x^3 - 36*x.
Triangle of coefficients begins as:
1;
3, 0;
15, 0, -1;
105, 0, -10, 0;
945, 0, -105, 0, 1;
10395, 0, -1260, 0, 21, 0;
135135, 0, -17325, 0, 378, 0, -1;
2027025, 0, -270270, 0, 6930, 0, -36, 0.
-
C := ComplexField();
T:= func< n, k| Round( i^k*Factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*Factorial(k+1)*Factorial(n-k)) ) >;
[T(n,k): k in [0..n], n in [0..10]];
-
T:= (n, k) -> I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!);
seq(seq(T(n, k), k = 0..n), n = 0..10);
-
(* First program *)
y[n_, x_]:= Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n -1/2, 1/x];
g[n_, k_]:= Coefficient[((-I)^n/2)*(y[n+1, I*x] + (-1)^n*y[n+1, -I*x]), x, k];
Table[g[n, k], {n,0,10}, {k,n,0,-1}]//Flatten
(* Second program *)
Table[I^k*(2*n-k+1)!*(1+(-1)^k)/(2^(n-k+1)*(k+1)!*(n-k)!), {n,0,10}, {k,0,n}]//Flatten
-
[[ i^k*factorial(2*n-k+1)*(1+(-1)^k)/(2^(n-k+1)*factorial(k+1)*factorial(n-k)) for k in (0..n)] for n in (0..10)]
A065943
Triangle of coefficients of Bessel polynomials {y_n(x)}''.
Original entry on oeis.org
3, 6, 30, 10, 90, 315, 15, 210, 1260, 3780, 21, 420, 3780, 18900, 51975, 28, 756, 9450, 69300, 311850, 810810, 36, 1260, 20790, 207900, 1351350, 5675670, 14189175, 45, 1980, 41580, 540540, 4729725, 28378350, 113513400, 275675400
Offset: 2
For n = 2 .. 5 the polynomials are 6; 30+90*x; 90+630*x+1260*x^2; 210+2520*x+11340*x^2+18900*x^3.
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
Comments