cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 52 results. Next

A001603 Odd-indexed terms of A124296.

Original entry on oeis.org

1, 11, 101, 781, 5611, 39161, 270281, 1857451, 12744061, 87382901, 599019851, 4105974961, 28143378001, 192899171531, 1322154751061, 9062194370461, 62113232767531, 425730505493801, 2918000490238361, 20000273409331051, 137083914639998701, 939587132382262661
Offset: 0

Views

Author

Keywords

Comments

Old name: Related to factors of Fibonacci numbers.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    A001603:=-(1+13*z**2+z**4)/(z-1)/(z**2-3*z+1)/(z**2-7*z+1); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    5 #^2 - 5 # + 1 &@ Fibonacci@ # & /@ Range[1, 43, 2] (* Michael De Vlieger, Apr 03 2017 *)

Formula

G.f.: -(1+13*x^2+x^4)/((x-1)*(x^2-3*x+1)*(x^2-7*x+1)). [After Simon Plouffe]

Extensions

Entry revised by Michel Marcus and N. J. A. Sloane, Jun 06 2015

A069180 F(n) and n! are relatively prime where F(n) are the Fibonacci numbers.

Original entry on oeis.org

1, 2, 7, 11, 13, 17, 19, 22, 23, 26, 29, 31, 34, 37, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157, 163, 166, 167, 169, 173, 178, 179, 181, 191
Offset: 1

Views

Author

Benoit Cloitre, Apr 10 2002

Keywords

Comments

Are there any primes p >5 such that F(p) and p! are not relatively primes?
From Robert Israel, May 31 2018: (Start)
n is in the sequence if and only if there is no prime q = prime(k) <= n such that A001602(k) | n.
All primes > 5 are in the sequence, because A001602(k) < prime(k) for k > 3, and we can't have n prime unless A001602(k)=n.
(End)

Crossrefs

Programs

  • Maple
    N:= 200: # for all terms <= N
    V:= Vector(N,1):
    F:= proc(n) option remember; procname(n-1)+procname(n-2) end proc:
    F(0):= 0: F(1):= 1:
    K:= proc(q) local k;
       for k from 1 do if F(k) mod q = 0 then return k fi
         od
    end proc:
    p:= 1:
    do
      p:= nextprime(p);
      if p > N then break fi;
      k:= K(p);
      k0:= k*ceil(p/k);
      V[[seq(i,i=k0..N,k)]]:= 0
    od:
    select(t -> V[t]=1, [$1..N]); # Robert Israel, May 31 2018
  • Mathematica
    Select[Range[1000], CoprimeQ[Fibonacci[#], #!]&] (* Jean-François Alcover, Jun 07 2020 *)

Formula

Conjecture : a(n) = C*n*Log(n) + 0(n*Log(n)) with 0, 6 < C < 0, 7

A073624 Primes ordered so that their most significant digits form the digits of Euler-Mascheroni constant .5772156649...

Original entry on oeis.org

5, 7, 71, 2, 11, 53, 61, 67, 41, 907, 13, 59, 3, 23, 83, 601, 607, 613, 503, 17, 2003, 9001, 89, 29, 401, 211, 43, 31, 101, 47, 223, 19, 509, 97, 37, 307, 521, 911, 311, 919, 929, 227, 313, 523, 937, 809, 8009, 541, 73, 617, 79, 229, 317, 409, 811, 821, 419, 823, 619
Offset: 1

Views

Author

Amarnath Murthy, Aug 08 2002

Keywords

Comments

In case of a 0 use two digits.

Crossrefs

Extensions

Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 25 2003

A194363 Lucas entry points: smallest m >= 0 such that the n-th prime divides Lucas(m), or -1 if there is no such m.

Original entry on oeis.org

0, 2, -1, 4, 5, -1, -1, 9, 12, 7, 15, -1, 10, 22, 8, -1, 29, -1, 34, 35, -1, 39, 42, -1, -1, 25, 52, 18, -1, -1, 64, 65, -1, 23, -1, 25, -1, 82, 84, -1, 89, 45, 95, -1, -1, 11, 21, 112, 114, 57, -1, 119, 60, 125, -1, 44, -1, 135, -1, 14, 142, -1, 22, 155, -1
Offset: 1

Views

Author

T. D. Noe, Oct 09 2011

Keywords

Comments

The -1 terms are for the primes in A053028. Note that 2 divides the zeroth Lucas number. In the plots, the uppermost line consists of the odd primes in A000057. Note that when a(n) > 0, then a(n) = A001602(n)/2.

Crossrefs

Cf. A000204 (Lucas numbers), A001602 (Fibonacci entry points), A223486 (Lucas entry points), A000040 (prime numbers).

Programs

  • Mathematica
    lim = 100; luc = LucasL[Range[0, Prime[lim]]]; Table[s = Select[Range[p], Mod[luc[[#]], p] == 0 &, 1]; If[s == {}, -1, s[[1]] - 1], {p, Prime[Range[lim]]}]

Formula

a(n) = A223486(A000040(n)). - Jon Maiga, Jul 01 2021

A230359 Prime numbers p such that their Fibonacci entry points are less than p+1.

Original entry on oeis.org

5, 11, 13, 17, 19, 29, 31, 37, 41, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 107, 109, 113, 131, 137, 139, 149, 151, 157, 173, 179, 181, 191, 193, 197, 199, 211, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 373, 379, 389, 397, 401, 409, 419, 421, 431, 433, 439, 449, 457, 461, 479, 491, 499
Offset: 1

Views

Author

Brandon Avila and Tanya Khovanova, Oct 16 2013

Keywords

Comments

For these primes p there exists a Fibonacci like sequence that doesn't contain multiples of p.
For other primes p the Fibonacci entry points are p+1. These primes are sequence A000057: Primes dividing all Fibonacci sequences.

Crossrefs

A002144 is a subsequence.

Programs

  • Maple
    filter:= proc(n) local i,a,b,c;
      if not isprime(n) then return false fi;
      a:= 0; b:= 1;
      for i from 1 to n-1 do
       c:= b;
       b:= a+b mod n; if b = 0 then return true fi;
       a:= c;
      od;
    false
    end proc:
    select(filter, [seq(i,i=3..1000,2)]); # Robert Israel, Sep 01 2020
  • Mathematica
    A001177[n_] := For[k = 1, True, k++, If[Divisible[Fibonacci[k], n], Return[k]]]; A230359 = Reap[For[p = 2, p <= 499, p = NextPrime[p], If[A001177[p] < 1+p, Sow[p]]]][[2, 1]] (* Jean-François Alcover, Oct 21 2013 *)
  • Sage
    def isA230359(p):
        return any(p.divides(fibonacci(k)) for k in (1..p))
    print([p for p in primes(1, 500) if isA230359(p)]) # Peter Luschny, Nov 01 2019

Formula

{p in A000040: A001177(p) < 1+p}.

A065106 Smallest Fibonacci index to produce a factor p^2 (for primes p).

Original entry on oeis.org

6, 12, 25, 56, 91, 110, 153, 342, 406, 552, 703, 752, 820, 915, 930, 979
Offset: 1

Views

Author

Len Smiley, Nov 21 2001

Keywords

Comments

Following Lucas, these might be called the prime-squared ranks of apparition.
Assuming that there are no square primitive factors in the Fibonacci sequence (an open question), then this sequence continues 1431, 1892, 2147, 2701, 2943, 3029, 3422, 3852, 4378, 4556, 4753, 4970, 5050, 5513, 6162, 6394, 6972, 7550, 7868, 8841, 8862, 9453. This is obtained by sorting the sequence prime(n)*A001602(n). - T. D. Noe, Apr 15 2004

Examples

			342 is here but not in A065069 because Fib(342) is the first Fib divisible by 19^2, but 342 is divisible by 6 and so is not a primitive index.
		

Crossrefs

Cf. A001602 (smallest m such that prime(n) divides Fibonacci(m)).

A120947 a(n) = smallest m such that n-th prime divides Pell(m).

Original entry on oeis.org

2, 4, 3, 6, 12, 7, 8, 20, 22, 5, 30, 19, 10, 44, 46, 27, 20, 31, 68, 70, 36, 26, 84, 44, 48, 51, 34, 108, 55, 28, 126, 132, 17, 140, 75, 150, 79, 164, 166, 87, 36, 91, 190, 96, 9, 18, 212, 74, 76, 23, 116, 14, 40, 84, 64, 262, 15, 270, 139, 140, 284, 49, 308, 310, 78, 159, 332
Offset: 1

Views

Author

Ralf Stephan, Aug 19 2006

Keywords

Comments

For all divisors d of n>0, Pell(d) divides Pell(n), so if a prime divides the n-th Pell number, so does it for all multiples of n.
For n > 1, a(n) is the multiplicative order of -3-2*sqrt(2), in GF(prime(n)) if 2 is a quadratic residue (mod prime(n)) or GF(prime(n)^2) otherwise. Thus a(n) divides prime(n)-1 if prime(n) == 1 or 7 (mod 8), i.e. n is in A024704, and a(n) divides prime(n)+1 if prime(n) == 3 or 5 (mod 8), i.e. n is 2 or is in A024705. - Robert Israel, Aug 28 2015

Examples

			a(4)=6 because the 6th Pell number, 70, is the first that is divisible by the 4th prime (=7).
		

Crossrefs

Cf. A000129 (Pell numbers), A001602 (equivalent sequence with Fibonacci numbers), A239111, A024704, A024705.

Programs

  • Maple
    p:= proc(n) p(n):=`if`(n<2, n, 2*p(n-1)+p(n-2)) end:
    a:= proc(n) local k, t; t:= ithprime(n);
          for k while irem(p(k), t)>0 do od; k
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 28 2014
    f:= proc(n)
    local p, r, G;
    uses numtheory;
    p:= ithprime(n);
    if quadres(2,p)=1 then
       r:= msqrt(2,p);
       order(-3-2*r, p)
    else
       G:= GF(p, 2, r^2-2);
       G:-order( G:-ConvertIn(-3-2*r));
    fi
    end proc:
    2, seq(f(n), n=2..100); # Robert Israel, Aug 28 2015
  • Mathematica
    p[n_] := p[n] = If[n<2, n, 2*p[n-1] + p[n-2]]; a[n_] := Module[{k, t}, t = Prime[n]; For[k=1, Mod[p[k], t]>0, k++]; k]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jun 16 2015, after Alois P. Heinz *)
  • PARI
    a(n,p=prime(n))=my(cur=Mod(1,p),last,m=1); while(cur, m++; [last,cur]=[cur,2*cur+last]); m \\ Charles R Greathouse IV, Jun 16 2015

A279011 Numbers k such that phi(6k) is either phi(6k-2) or phi(6k+2), where phi is Euler's totient function A000010.

Original entry on oeis.org

1, 2, 12, 152, 222, 268, 362, 432, 723, 992, 1517, 2532, 2567, 8472, 9718, 9858, 13498, 15738, 34732, 35898, 44092, 60363, 69312, 75168, 75973, 82752, 87208, 88888, 98198, 105852, 114392, 126848, 128672, 135368, 141093, 161268, 221223, 233788, 301513, 328358
Offset: 1

Views

Author

N. J. A. Sloane, Dec 10 2016

Keywords

Crossrefs

Cf. A000010.
Union of A279183 and A279184.

Programs

  • Magma
    [n: n in [1..1000000] | not (EulerPhi(6*n) eq EulerPhi(6*n-2)) eq (EulerPhi(6*n) eq EulerPhi(6*n+2))]; // Vincenzo Librandi, Dec 12 2016
  • Mathematica
    Select[Range[10^6], Function[k, Or @@ Map[EulerPhi[6 k] == EulerPhi@ # &, 6 k + {-2, 2}]]] (* Michael De Vlieger, Dec 12 2016 *)
    Select[Range[330000],EulerPhi[6#]==EulerPhi[6#-2]||EulerPhi[6#]==EulerPhi[6#+2]&] (* Harvey P. Dale, Jul 07 2025 *)

Extensions

More terms from Vincenzo Librandi, Dec 12 2016

A279183 Numbers k such that phi(6k) = phi(6k-2), where phi is Euler's totient function A000010.

Original entry on oeis.org

1, 2, 12, 152, 222, 362, 432, 992, 1517, 2532, 2567, 8472, 34732, 44092, 69312, 82752, 105852, 114392, 128672, 336992, 350082, 393132, 393552, 462747, 497712, 559872, 665817, 714502, 931432, 968952, 1126602, 1281867, 1389337, 1449992, 1638712, 1694292
Offset: 1

Views

Author

N. J. A. Sloane, Dec 10 2016

Keywords

Crossrefs

Cf. A000010.
A279011 is the union of A279183 and A279184.

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n-2)]; // Vincenzo Librandi, Dec 11 2016
    
  • Mathematica
    a = {}; Do[If[EulerPhi[6k] == EulerPhi[6 k - 2], AppendTo[a, k]], {k, 1000000}]; a (* Vincenzo Librandi, Dec 11 2016 *)
  • PARI
    isok(k) = eulerphi(6*k) == eulerphi(6*k-2); \\ Michel Marcus, Dec 11 2016

Extensions

More terms from Vincenzo Librandi, Dec 11 2016

A279184 Numbers k such that phi(6k) = phi(6k+2), where phi is Euler's totient function A000010.

Original entry on oeis.org

268, 723, 9718, 9858, 13498, 15738, 35898, 60363, 75168, 75973, 87208, 88888, 98198, 126848, 135368, 141093, 161268, 221223, 233788, 301513, 328358, 330633, 419148, 507648, 527928, 543468, 551238, 556418, 586018, 725958, 772508, 964588, 985728
Offset: 1

Views

Author

N. J. A. Sloane, Dec 10 2016

Keywords

Crossrefs

Cf. A000010.
A279011 is the union of A279183 and A279184.

Programs

  • Magma
    [n: n in [1..2*10^6] | EulerPhi(6*n) eq EulerPhi(6*n+2)]; // Vincenzo Librandi, Dec 11 2016
    
  • Maple
    select( k -> numtheory:-phi(6*k)=numtheory:-phi(6*k+2), [$1..10^6]); # Robert Israel, Dec 11 2016
  • Mathematica
    a = {}; Do[If[EulerPhi[6 k] == EulerPhi[6 k + 2], AppendTo[a, k]], {k, 1000000}]; a (* Vincenzo Librandi, Dec 11 2016 *)
  • PARI
    isok(k) = eulerphi(6*k) == eulerphi(6*k+2); \\ Michel Marcus, Dec 11 2016

Extensions

a(8)-a(33) from Robert Israel, Dec 11 2016
Previous Showing 31-40 of 52 results. Next