cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 120 results. Next

A080345 a(n) is the number of prime factors in Fibonacci(prime(n)); that is, in the Fibonacci number whose index is the n-th prime.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 2, 3, 2, 2, 2, 1, 2, 4, 2, 3, 2, 2, 2, 2, 1, 1, 3, 4, 2, 4, 4, 2, 2, 3, 3, 2, 2, 4, 2, 4, 4, 2, 5, 3, 4, 3, 2, 3, 3, 4, 2, 2, 3, 4, 2, 4, 4, 4, 3, 2, 3, 5, 4, 2, 1, 7, 5, 4, 3, 3, 2, 2, 4, 3, 4, 1, 1, 5, 5, 1, 3, 5, 3, 2, 3, 4, 3, 4, 6, 1, 3, 4, 3
Offset: 1

Views

Author

T. D. Noe, Feb 16 2003

Keywords

Comments

In all known examples, Fibonacci(prime(n)) is squarefree, in which case a(n) is well-defined, i.e., the number of distinct prime factors equals the total number of prime factors. But if for some n, Fibonacci(prime(n)) has a repeated prime factor, then a(n) is not well-defined. - Jonathan Sondow, Oct 22 2015

Examples

			a(12) = 3 because the 12th prime is 37 and Fibonacci(37) = 24157817 = 73 * 149 * 2221 has 3 prime factors. - clarified by _Jonathan Sondow_, Oct 21 2015
		

Crossrefs

Programs

  • Mathematica
    Table[Length[FactorInteger[Fibonacci[Prime[n]]]], {n, 60}]
    PrimeNu[Fibonacci[Prime[Range[100]]]] (* Harvey P. Dale, Mar 13 2016 *)
  • PARI
    a(n) = omega(fibonacci(prime(n))); \\ Michel Marcus, Oct 22 2015

Formula

a(n) = A001221(A000045(A000040(n))). - Michel Marcus, Oct 22 2015

A099000 Indices k such that the k-th prime is a Fibonacci number.

Original entry on oeis.org

1, 2, 3, 6, 24, 51, 251, 3121, 42613, 23023556, 143130479, 2602986161967491
Offset: 1

Views

Author

Rick L. Shepherd, Nov 06 2004

Keywords

Comments

From Hugo Pfoertner, Jan 06 2020: (Start)
The computation of the next two terms, corresponding to the primes F(131) = A005478(13) = 1066340417491710595814572169, and F(137) = A005478(14) = 19134702400093278081449423917, should already be within reach with current (2020) technology, e.g. with Kim Walisch's "primecount" program, which allows massive parallelization. An exact determination of the following term a(15), which corresponds to F(359), is beyond any imaginable technical possibility.
Estimates for a(13)-a(15), found by using the PARI program from A121046 in a bisection loop, with an accuracy that corresponds to the shown number of digits, are as follows:
a(13) = primepi(F(131)) ~= 1.741898800848...*10^25,
a(14) = primepi(F(137)) ~= 2.9848914766265...*10^26,
a(15) = primepi(F(359)) ~= 2.78114064956041656819790214151422895...*10^72.
(End)

Crossrefs

Cf. A001605 (n-th Fibonacci number is prime), A005478 (Prime Fibonacci numbers).
Cf. A121046.

Programs

  • Mathematica
    PrimePi[Select[Fibonacci[Range[80]], PrimeQ]]
  • PARI
    print1("1, 2");forprime(p=5,47,if(isprime(fibonacci(p)),print1(", "primepi(fibonacci(p))))) \\ Charles R Greathouse IV, Aug 21 2011

Formula

a(n) = A000720(A005478(n)). - M. F. Hasler, Aug 21 2011

Extensions

a(11) from Ryan Propper, Oct 16 2005
a(12) from Charles R Greathouse IV, Aug 21 2011

A122534 Numbers k such that Fibonacci(prime(prime(k))) is prime.

Original entry on oeis.org

1, 2, 3, 4, 9, 23, 25, 1456, 1616, 3865
Offset: 1

Views

Author

Alexander Adamchuk, Sep 18 2006

Keywords

Comments

The corresponding primes are {2,5,89,1597,99194853094755497,...}.
Numbers k such that A093308(k) is prime.
A277575(n) = prime(a(n)) is a prime in A119984.

Crossrefs

Formula

a(n) = PrimePi(A277575(n)) = PrimePi(PrimePi(A277284(n))). - Bobby Jacobs, Oct 26 2016

A140362 Semiprimes pq that divide the sum of the squares of their divisors, 1+p^2+q^2+(pq)^2.

Original entry on oeis.org

10, 65, 20737
Offset: 1

Views

Author

Mohamed Bouhamida, Jul 22 2008, Jul 27 2008

Keywords

Comments

6 is the smallest integer n which is the product of two distinct primes and which divides the sum of the cubes of the divisors of n. Are there other numbers with this property?
Using Pell equations and a Fibonacci identity, Max Alekseyev and I have shown that all terms are the product of prime Fibonacci numbers whose indices are twin primes. The first three terms are Fib(3)*Fib(5), Fib(5)*Fib(7) and Fib(11)*Fib(13). The other two known terms are Fib(431)*Fib(433) and Fib(569)*Fib(571), huge numbers that are in the b-file. The sequence probably has no additional terms. - T. D. Noe, Jul 27 2008
Let a, b, c and d be consecutive odd-indexed Fibonacci numbers. Then it can be proved that 1 + b^2 + c^2 + (bc)^2 = abcd, which shows that bc divides 1 + b^2 + c^2 + (bc)^2. Hence if b and c are prime, then bc is in this sequence. - T. D. Noe, Jul 27 2008
Empirical search suggests that A067558(a(n))/A032741(a(n)) = a(n). A032741(a(n)) = 3 for all n by definition of semiprime. A067558(a(n)) must also then be divisible by 3. a(n) can be called the n-th "perfect mean square aliquot number". - William Krier, Dec 16 2024

Examples

			10 divides (1^2 + 2^2 + 5^2) giving 3 - the number of proper divisors of semiprime 10.
65 divides (1^2 + 5^2 + 13^2) giving 3 - the number of proper divisors of semiprime 65.
20737 divides (1^2 + 89^2 + 233^2) giving 3 - the number of proper divisors of semiprime 20737.
		

Crossrefs

Programs

  • PARI
    isok(n) = sigma(n, 2) - n^2 == 3*n; \\ Michel Marcus, Jun 24 2014

A279795 Numbers n such that F(n) and F(n-2) are both prime where F(n) = A000045(n).

Original entry on oeis.org

5, 7, 13, 433, 571
Offset: 1

Views

Author

Altug Alkan, Dec 18 2016

Keywords

Comments

a(6) > 2904353. - Daniel Suteu, Dec 23 2016
Terms n of A001605 such that n-2 is also a term of A001605. Surprisingly, the first 4 terms minus 2, { 3, 5, 11, 431 }, are the first four terms of A101315 which also relates to simultaneously prime { m+2, F(m) and F(m)+2 }, but where F is a different function, m -> (m-1)^2 + 1. - M. F. Hasler, Dec 24 2016
Larger primes of the Fibonacci prime pairs in A073340. - Bobby Jacobs, Jan 18 2017

Examples

			13 is a term because Fibonacci(13) = 233 and Fibonacci(11) = 89 are both prime.
		

Crossrefs

Programs

Formula

a(n) = A281087(n) + 2. - Bobby Jacobs, Jan 18 2017

A303263 Indices of primes in tribonacci sequence A000073.

Original entry on oeis.org

4, 6, 7, 11, 87, 98, 215, 802, 4202, 18699, 96879
Offset: 1

Views

Author

M. F. Hasler, Apr 18 2018

Keywords

Comments

T = A000073 is defined by T(n+1) = T(n) + T(n-1) + T(n-2), T(2) = 1, T(1) = T(0) = 0.
The largest terms correspond to unproven probable primes T(a(n)).

Crossrefs

Cf. A000073 (= T), A092836 (= T(a(n))), A092835 (= a(n) - 1).
Cf. A001605 (indices of primes in Fibonacci numbers A000045).

Programs

  • Mathematica
    -1 + Position[LinearRecurrence[{1, 1, 1}, {0, 0, 1}, 10^4], ?PrimeQ][[All, 1]] (* _Michael De Vlieger, Apr 21 2018 *)
  • PARI
    a(n,N=4,S=vector(N,i,i>N-2))={for(i=N,oo,ispseudoprime(S[i%N+1]=2*S[(i-1)%N+1]-S[i%N+1])&&!n--&&return(i))}

Formula

a(n) = A092835(n) + 1 = index of A092836(n) in A000073.

A050180 Numbers m such that prime(m) + Fibonacci(m) is prime.

Original entry on oeis.org

1, 3, 12, 24, 42, 60, 132, 303, 312, 450, 564, 1236, 1419, 2952, 10098, 12060, 13848, 17229, 22356, 37896, 251904
Offset: 1

Views

Author

Jason Earls, Oct 06 2001

Keywords

Comments

a(22) > 256737. - J.W.L. (Jan) Eerland, Jun 22 2022

Crossrefs

Programs

  • Magma
    [n: n in [1..2000] | IsPrime(NthPrime(n)+Fibonacci(n))]; // Vincenzo Librandi, Jul 29 2016
  • Mathematica
    Do[ If[ PrimeQ[ Prime[n] + Fibonacci[n]], Print[n] ], {n, 1, 150000} ]
    Select[Range[10000], PrimeQ[Fibonacci[#] + Prime[#]] &] (* Vincenzo Librandi, Jul 29 2016 *)
    DeleteCases[ParallelTable[If[PrimeQ[Prime[n]+Fibonacci[n]],n,a],{n,0,256737}],a] (* J.W.L. (Jan) Eerland, Jun 22 2022 *)
  • PARI
    for(n=1,10^5, if(isprime(prime(n)+fibonacci(n)),print1(n," ")))
    

Extensions

More terms from Robert G. Wilson v, Oct 08 2001
a(18)-a(19) from Vincenzo Librandi, Apr 10 2020
a(20) from J.W.L. (Jan) Eerland, Dec 23 2021
a(21) from J.W.L. (Jan) Eerland, Jun 22 2022

A068329 Arithmetic derivative of Fibonacci numbers > 0.

Original entry on oeis.org

0, 0, 1, 1, 1, 12, 1, 10, 19, 16, 1, 384, 1, 42, 437, 491, 1, 4164, 150, 4388, 6341, 288, 1, 155472, 30035, 754, 115271, 142474, 1, 1530588, 2974, 1084624, 1802069, 5168, 2555363, 46594656, 503939, 1406531
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 27 2002

Keywords

Crossrefs

Cf. A000045, A003415, A001605 (where a(n) = 1).

Programs

  • GAP
    a:=Concatenation([0,0],List(List([3..40],n->Factors(Fibonacci(n))),i->Product(i)*Sum(i,j->1/j))); # Muniru A Asiru, Oct 31 2018
    
  • Magma
    Ad:=func; [n le 2 select 0 else Ad(Fibonacci(n)): n in [1..40]]; // Bruno Berselli, Oct 22 2013
    
  • Mathematica
    ad[1] = 0; ad[n_] := Module[{f = FactorInteger[n]}, Total[n*f[[All, 2]]/ f[[All, 1]]]]; a[n_] := ad[Fibonacci[n]]; Array[a, 40] (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    a(n) = my(f = factor(n=fibonacci(n))~); sum(i=1, #f, n/f[1, i]*f[2, i]) \\ Iain Fox, Oct 29 2018
    
  • Python
    from sympy import fibonacci, factorint
    def A068329(n):
        f = fibonacci(n)
        return sum((f*e//p for p,e in factorint(f).items())) if n > 2 else 0 # Chai Wah Wu, Jun 12 2022

Formula

a(n) = A003415(A000045(n)).

A073340 Fibonacci prime pairs: the indices of each pair differ by two and the relevant Fibonacci numbers are both prime.

Original entry on oeis.org

3, 5, 5, 7, 11, 13, 431, 433, 569, 571
Offset: 1

Views

Author

Harvey P. Dale, Aug 25 2002

Keywords

Comments

There are no other Fibonacci prime pairs up to Fibonacci(104911). (See A001605.) Are there any larger terms?

Examples

			The 431st Fibonacci number and the 433rd Fibonacci number are both prime and their indices differ by 2.
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Rev. ed. 1997, p. 46.

Crossrefs

Programs

  • Mathematica
    Flatten[Select[Partition[Select[Range[3000], PrimeQ[Fibonacci[ # ]]&], 2, 1], #[[2]] - #[[1]] == 2 &]]
  • Python
    from sympy import isprime
    def afind(limit):
      i, fnm2, fnm1 = 1, 1, 1
      while i < limit:
        if isprime(fnm2) and isprime(fnm2 + fnm1):
          print(i, i+2, sep=", ", end=", ")
        i, fnm2, fnm1 = i+1, fnm1, fnm2 + fnm1
    afind(600) # Michael S. Branicky, Mar 05 2021

Extensions

Offset changed to 1 by Joerg Arndt, Jan 18 2017
a(1) and a(2) prepended by Bobby Jacobs, Jan 18 2017

A082602 Number of primes between successive Fibonacci numbers (including possibly the Fibonacci numbers themselves).

Original entry on oeis.org

0, 1, 2, 2, 2, 2, 3, 3, 5, 8, 11, 17, 24, 37, 55, 85, 126, 198, 297, 458, 704, 1088, 1674, 2602, 4029, 6263, 9738, 15187, 23705, 36981, 57909, 90550, 142033, 222855, 349862, 549903, 865019, 1361581, 2145191, 3381318, 5334509, 8419528, 13298631, 21014892
Offset: 1

Views

Author

Hauke Worpel (hw1(AT)email.com), May 23 2003

Keywords

Examples

			a(10) = 8 because the 10th Fibonacci number is 55, the 11th is 89 and the eight primes between them are 59, 61, 67, 71, 73, 79, 83 and 89.
		

Crossrefs

Programs

  • Magma
    [#PrimesInInterval(Fibonacci(n-1), Fibonacci(n)): n in [2..45]]; // Vincenzo Librandi, Jul 13 2017
  • Mathematica
    lst={};Do[p=0;Do[If[PrimeQ[a],p++ ],{a,Fibonacci[n],Fibonacci[n+1]}];AppendTo[lst,p],{n,50}];lst (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
  • PARI
    { a(n)= c=0; forprime(N=fibonacci(n),fibonacci(n+1),c=c+1); return(c); }
    

Extensions

Corrected and extended by Rick L. Shepherd, May 26 2003
a(43)-a(44) from Vincenzo Librandi, Jul 13 2017
Previous Showing 41-50 of 120 results. Next