cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 45 results. Next

A113192 Primes that are the difference of two Lucas numbers; primes in A113191.

Original entry on oeis.org

2, 3, 5, 7, 11, 17, 29, 43, 47, 73, 181, 197, 199, 293, 311, 503, 521, 839, 1361, 2131, 2203, 2207, 3571, 5749, 9349, 13763, 23633, 24469, 24473, 38239, 103483, 103681, 161983, 167759, 271367, 399601, 439081, 439157, 709283, 1692737, 3010349
Offset: 1

Views

Author

T. D. Noe, Oct 17 2005

Keywords

Comments

The difference L(i)-L(j) equals the sum L(j+1)+...+L(i+2).

Examples

			The prime 181 is here because it is L(11)-L(6).
		

Crossrefs

Cf. A000032 (Lucas numbers), A001606 (Lucas(n) is prime), A113193 (number of times that Lucas(n)-Lucas(i) is prime for i=0..n-3).

Programs

  • Mathematica
    Lucas[n_] := Fibonacci[n+1]+Fibonacci[n-1]; lst={}; Do[p=Lucas[n]-Lucas[i]; If[PrimeQ[p], AppendTo[lst, p]], {n, 2, 40}, {i, 0, n-2}]; Union[lst]

A280104 a(n) = smallest prime factor of n-th Lucas number A000032(n), or 1 if there are none.

Original entry on oeis.org

2, 1, 3, 2, 7, 11, 2, 29, 47, 2, 3, 199, 2, 521, 3, 2, 2207, 3571, 2, 9349, 7, 2, 3, 139, 2, 11, 3, 2, 7, 59, 2, 3010349, 1087, 2, 3, 11, 2, 54018521, 3, 2, 47, 370248451, 2, 6709, 7, 2, 3, 6643838879, 2, 29, 3, 2, 7, 119218851371, 2, 11, 47, 2, 3, 709, 2
Offset: 0

Views

Author

Vincenzo Librandi, Dec 26 2016

Keywords

Comments

From Robert Israel, Jan 05 2017: (Start)
If m and n are odd, m > 1 and m | n, then a(n) <= a(m).
a(n) = 2 if and only if 3 | n.
a(n) = 3 if and only if n is in A091999.
a(n) is never 5.
a(n) = 7 if and only if n is in A259755.
a(n) = A000032(n) if and only if n is in A001606.
(End)

Crossrefs

Cf. A000032, A001606, A020639, A079451 (same for largest prime factor), A091999, A139044, A144293, A259755, A279623.
Column k=2 of A238899 (for n>=2).

Programs

  • Magma
    [2,1] cat [Minimum(PrimeDivisors(Lucas(n))): n in [2..60]];
    
  • Maple
    lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1):
    spf:= proc(n) local F;
      F:= remove(hastype,ifactors(n,easy)[2],symbol);
      if F <> [] then return min(seq(f[1],f=F)) fi;
    min(numtheory:-factorsec(n))
    end proc:
    spf(1):= 1:
    map(spf @ lucas, [$0..200]); # Robert Israel, Jan 05 2017
  • Mathematica
    f[n_]:=(FactorInteger@LucasL@n)[[1, 1]]; Array[f, 60, 0]
  • PARI
    a000032(n) = fibonacci(n+1)+fibonacci(n-1)
    a(n) = if(a000032(n-1)==1, 1, factor(a000032(n-1))[1, 1]) \\ Felix Fröhlich, Dec 26 2016

Formula

a(n) = A020639(A000032(n)). - Felix Fröhlich, Dec 26 2016

Extensions

Offset changed from Bruno Berselli, Dec 27 2016

A076697 Indices of record values in A079451, largest prime factor of Lucas numbers A000032.

Original entry on oeis.org

0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 26, 31, 37, 41, 47, 53, 61, 68, 71, 76, 79, 86, 113, 136, 164, 172, 178, 202, 218, 229, 262, 278, 284, 307, 313, 328, 353, 373, 436, 443, 458, 487, 503, 557, 577, 586, 613, 617, 746, 751, 758, 863, 914
Offset: 0

Views

Author

Shane Findley, Oct 25 2002

Keywords

Comments

From M. F. Hasler, Apr 09 2025: (Start)
Original name: Next-to-largest factor of Lucas(n).
The offset 0 is coherent with the fact that the initial term is a starting value rather than a record value.
When A000032(n) is prime (<=> n is in A001606), it necessarily sets a new record for the largest prime factor, since A000032 is increasing from the second term on. Therefore, A001606 is a subsequence. (End)

Crossrefs

Cf. A000042 (Lucas numbers, starting with 2), A079451 (largest prime factor of these).
Cf. A001606 (Indices of prime Lucas numbers: a subsequence).

Programs

  • PARI
    A076697_first(n, m=0)=vector(n,i, i>1 || n=-1; until(mA079451(n++), m), );n) \\ M. F. Hasler, Apr 09 2025
    
  • Python
    def A076697(n):
        try: terms, M = A076697.terms, A076697.M
        except AttributeError: A076697.terms = terms = [0]; A076697.M = M = 2
        while len(terms) <= n: terms.append(next(i for i in range(terms[-1]+1, 1<<59)
            if M < (M:=max(A079451(i),M)))); A076697.M = M
        return terms[n] # M. F. Hasler, Apr 10 2025

Extensions

New definition and data corrected and extended by M. F. Hasler, Apr 09 2025

A123677 Primes p such that Lucas(prime(p)) is prime, where Lucas = A000032.

Original entry on oeis.org

3, 5, 7, 11, 13, 71, 113, 643, 769, 13681, 51929
Offset: 1

Views

Author

Alexander Adamchuk, Oct 05 2006

Keywords

Comments

These are the primes in A120561.
Numbers n such that Lucas(prime(n)) is prime are listed in A120561; indices of prime Lucas numbers are listed in A001606.

Crossrefs

Formula

a(n) = prime(A123678(n)).
a(n) = pi(A277290(n)). - Bobby Jacobs, Oct 30 2016

Extensions

51929 found by Henri Lifchitz, from Jens Kruse Andersen, Jul 24 2014

A123678 Numbers n such that Lucas(prime(prime(n))) is prime, where Lucas(k) = A000032(k).

Original entry on oeis.org

2, 3, 4, 5, 6, 20, 30, 117, 136, 1616, 5313
Offset: 1

Views

Author

Alexander Adamchuk, Oct 05 2006

Keywords

Comments

Indices of prime Lucas numbers are listed in A001606.
Numbers n such that Lucas(prime(n)) is prime are listed in A120561.
Primes in A120561 are listed in A123677(n) = prime(a(n)).

Crossrefs

Cf. A119984, A122534 (Numbers n such that Fibonacci(prime(prime(n))) is prime).

Formula

a(n) = pi(A123677(n)).
a(n) = pi(pi(A277290(n))). - Bobby Jacobs, Oct 30 2016

Extensions

5313 found by Henri Lifchitz, from Jens Kruse Andersen, Jul 24 2014

A193495 Number of odd divisors of Lucas(n), Lucas numbers beginning at 2.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 8, 2, 4, 4, 8, 4, 4, 8, 4, 4, 6, 4, 12, 2, 4, 4, 8, 16, 8, 2, 4, 8, 8, 2, 24, 4, 16, 32, 8, 2, 8, 4, 16, 8, 8, 2, 20, 24, 4, 8, 8, 8, 32, 2, 4, 32, 4, 32, 24, 4, 4, 16, 16, 2, 8, 4, 8, 64, 4, 16, 12, 2, 4
Offset: 0

Views

Author

Jonathan Vos Post, Jul 28 2011

Keywords

Comments

This is to A193292 as A000032 Lucas numbers (beginning at 2) is to A000045 Fibonacci numbers.

Examples

			a(18) = 8 because L(18) = 5778 = 2 * 3^3 * 107 whose odd divisors are 8 in number: {1, 3, 9, 27, 107, 321, 963, 2889}. a(n) = 2 iff n is in A001606 (Indices of prime Lucas numbers).
		

Crossrefs

Programs

Formula

a(n) = A001227(A000032(n)).

A073446 Product L(n)*S(n), where L(n) are Lucas numbers and S(n) are Lucas 3-step numbers = A000032(n) * A001644(n).

Original entry on oeis.org

6, 1, 9, 28, 77, 231, 702, 2059, 6157, 18316, 54489, 162185, 482678, 1436397, 4274853, 12722028, 37861085, 112675763, 335326230, 997940307, 2969899037, 8838503884, 26303639349, 78280380217, 232964641030, 693309407681
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 01 2002

Keywords

Comments

a(n) is also the trace of the matrix R^n, where R is the Kronecker product of the Fibonacci matrix (Fibomatrix): first row (1,1), second row (1,0), times the Tribomatrix: first row (1,1,0), second row (1,0,1), third row (1,0,0).
a(n) is semiprime iff n is an element of A001606 (an index of a prime Lucas number) and an element of A104576 (an index of a prime Lucas 3-step number). The only known such are n = 2, 4, 7, 8 (through 67661). - Jonathan Vos Post, May 10 2005

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

Crossrefs

Programs

  • GAP
    a:=[6,1,9,28,77,231];; for n in [7..40] do a[n]:=a[n-1]+4*a[n-2] +5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Feb 19 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6) )); // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    CoefficientList[Series[(6-5x-16x^2-15x^3-4x^4+x^5)/(1-x-4x^2-5x^3-2x^4 +x^5-x^6), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^40)); Vec((6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6)) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    ((6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
    

Formula

a(n) = a(n-1)+4*a(n-2)+5*a(n-3)+2*a(n-4)-a(n-5)+a(n-6), a(0)=6, a(1)=1, a(2)=9, a(3)=28, a(4)=77, a(5)=231.
G.f.: (6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6).

A120561 Numbers n such that Lucas(prime(n)) is prime, where Lucas = A000032.

Original entry on oeis.org

1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 15, 16, 18, 20, 22, 30, 65, 71, 96, 112, 113, 150, 184, 218, 643, 645, 769, 982, 1059, 1304, 1464, 1649, 1695, 2208, 3776, 3899, 4626, 5236, 5684, 7988, 8700, 9143, 13013, 13681, 14641, 16590, 17433, 18198, 29529, 32870, 37234, 43994, 47150, 50373, 51420, 51929, 52953, 55965, 71398, 82258
Offset: 1

Views

Author

Alexander Adamchuk, Aug 07 2006, Oct 05 2006

Keywords

Comments

All prime Lucas numbers A000032[n] have indices that are prime, zero or a power of 2. It is a conjecture that all indices of prime Lucas numbers are prime, except n = 0, 4, 8, 16.
Indices of prime Lucas numbers are listed in A001606[n] = {0,2,4,5,7,8,11,13,16,17,19,31,37,41,47,53,61,...}.
Primes in a(n) are listed in A123677[n] = {3,5,7,11,13,71,113,643,769,13681,...} Primes p such that Lucas[Prime[p]] is prime.
Numbers n such that Lucas[Prime[Prime[n]]] is prime are listed in A123678[n] = PrimePi[A123677[n]] = {2,3,4,5,6,20,30,117,136,1616,...}.

Crossrefs

Cf. A000032, A119984. Cf. A001606 - Indices of prime Lucas numbers.

Programs

  • Mathematica
    Select[ Range[300], PrimeQ[ Fibonacci[ Prime[ # ] - 1 ] + Fibonacci[ Prime[ # ] + 1 ]] & ]

Formula

a(n) = PrimePi(A001606(n+4)) for n>5.

Extensions

a(52)-a(60) (from A001606) from Jens Kruse Andersen, Jul 24 2014

A121533 Fibonacci-Lucas prime twins: Prime Fibonacci numbers Fibonacci(k) such that Lucas numbers Lucas(k) = Fibonacci(k-1) + Fibonacci(k+1) are also prime.

Original entry on oeis.org

3, 5, 13, 89, 233, 1597, 2971215073
Offset: 1

Views

Author

Alexander Adamchuk, Aug 05 2006

Keywords

Comments

Indices for Fibonacci-Lucas prime twins are A080327(n) = {4, 5, 7, 11, 13, 17, 47, ...}. Corresponding Lucas-Fibonacci prime twins are A121534(n) = {7, 11, 29, 199, 521, 3571, 6643838879, ...}. Probable primes Fibonacci(148091) and Lucas(148091) are the next probable Fibonacci-Lucas and Lucas-Fibonacci prime twins. They have 30949 and 30950 digits.

Examples

			a(1) = 3 because Fibonacci(4) = 3 is prime and Lucas(4) = 5 is also prime.
		

Crossrefs

Programs

  • Mathematica
    Do[f=Fibonacci[n]; l=Fibonacci[n-1]+Fibonacci[n+1]; If[PrimeQ[f]&&PrimeQ[l], Print[{f,l}]], {n,10000}]

A168033 Primes p such that floor(phi^p) is prime.

Original entry on oeis.org

2, 5, 7, 11, 13, 17, 19, 31, 37, 41, 47, 53, 61, 71, 79, 113, 313, 353, 503, 613, 617, 863, 1097, 1361, 4787, 4793, 5851, 7741, 8467, 10691, 12251, 13963, 14449, 19469, 35449, 36779, 44507, 51169, 56003, 81671, 89849, 94823, 140057, 148091, 159521, 183089, 193201, 202667, 344293, 387433, 443609, 532277, 574219, 616787, 631181, 637751, 651821, 692147, 901657, 1051849
Offset: 1

Views

Author

Keywords

Comments

Primes in A059791. - Charles R Greathouse IV, Jul 29 2011
Also primes in A001606. - Michel Marcus, Oct 21 2016

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(2000)| IsPrime(Lucas(p))]; // Vincenzo Librandi, Jul 11 2019
  • Mathematica
    $MaxExtraPrecision=6!; Select[Prime[Range[5! ]],PrimeQ[Floor[GoldenRatio^# ]]&]
  • PARI
    phi=(1+sqrt(5))/2;forprime(p=2,1e3,if(isprime(floor(phi^p)),print1(p", "))) \\ Charles R Greathouse IV, Jul 29 2011
    

Extensions

a(22)-a(32) from Charles R Greathouse IV, Jul 29 2011
More terms (using A001606) from Joerg Arndt, Jul 11 2019
Previous Showing 11-20 of 45 results. Next