cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 76 results. Next

A005579 a(n) = smallest number k such that Product_{i=1..k} prime(i)/(prime(i)-1) > n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 9, 14, 22, 35, 55, 89, 142, 230, 373, 609, 996, 1637, 2698, 4461, 7398, 12301, 20503, 34253, 57348, 96198, 161659, 272124, 458789, 774616, 1309627, 2216968, 3757384, 6375166, 10828012, 18409028, 31326514, 53354259, 90945529, 155142139
Offset: 0

Views

Author

Keywords

Comments

Laatsch (1986) proved that for n >= 2, a(n) gives the smallest number of distinct prime factors in even numbers having an abundancy index > n.
The abundancy index of a number k is sigma(k)/k. - T. D. Noe, May 08 2006
The first differences of this sequence, A005347, begin the same as the Fibonacci sequence A000045. - T. D. Noe, May 08 2006
Equal to A256968 except for n = 2 and n = 3. See comment in A256968. - Chai Wah Wu, Apr 17 2015

Examples

			The products Product_{i=1..k} prime(i)/(prime(i)-1) for k >= 0 start with 1, 2, 3, 15/4, 35/8, 77/16, 1001/192, 17017/3072, 323323/55296, 676039/110592, 2800733/442368, 86822723/13271040, 3212440751/477757440, 131710070791/19110297600, 5663533044013/802632499200, ... = A060753/A038110. So a(3) = 3.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A001611 is similar but strictly different.

Programs

  • Mathematica
    (* For speed and accuracy, the second Mathematica program uses 30-digit real numbers and interval arithmetic. *)
    prod=1; k=0; Table[While[prod<=n, k++; prod=prod*Prime[k]/(Prime[k]-1)]; k, {n,0,25}] (* T. D. Noe, May 08 2006 *)
    prod=Interval[1]; k=0; Table[While[Max[prod]<=n, k++; p=Prime[k]; prod=N[prod*p/(p-1),30]]; If[Min[prod]>n, k, "too few digits"], {n,0,38}]
  • PARI
    a(n)=my(s=1,k); forprime(p=2,, s*=p/(p-1); k++; if(s>n, return(k))) \\ Charles R Greathouse IV, Aug 20 2015
    
  • Python
    from sympy import nextprime
    def a_list(upto: int) -> list[int]:
        L: list[int] = [0]
        count = 1; bn = 1; bd = 1; p = 2
        for k in range(1, upto + 1):
            bn *= p
            bd *= p - 1
            while bn > count * bd:
                L.append(k)
                count += 1
            p = nextprime(p)
        return L
    print(a_list(1000))  # Chai Wah Wu, Apr 17 2015, adapted by Peter Luschny, Jan 25 2025

Formula

a(n) = smallest k such that A002110(k)/A005867(k) > n. - Artur Jasinski, Nov 06 2008
a(n) = PrimePi(A091440(n)) = A000720(A091440(n)) for n >= 4. - Amiram Eldar, Apr 18 2025

Extensions

Edited by T. D. Noe, May 08 2006
a(26) added by T. D. Noe, Sep 18 2008
Typo corrected by Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
a(27)-a(36) from Vincent E. Yu (yu.vincent.e(AT)gmail.com), Aug 14 2009
Comment corrected by T. D. Noe, Apr 04 2010
a(37)-a(39) from T. D. Noe, Nov 16 2010
Edited and terms a(0)-a(1) prepended by Max Alekseyev, Jan 25 2025

A208698 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 10, 14, 81, 98, 100, 16, 22, 196, 271, 358, 256, 26, 35, 484, 844, 1309, 1152, 676, 42, 56, 1225, 2706, 5524, 5371, 3910, 1764, 68, 90, 3136, 8977, 24086, 30160, 23637, 12994, 4624, 110, 145, 8100, 30168, 109599, 177488, 177872
Offset: 1

Views

Author

R. H. Hardin Mar 01 2012

Keywords

Comments

Table starts
..2....4.....6......9......14.......22.........35..........56...........90
..4...16....36.....81.....196......484.......1225........3136.........8100
..6...36....98....271.....844.....2706.......8977.......30168.......102384
.10..100...358...1309....5524....24086.....109599......506870......2376964
.16..256..1152...5371...30160...177488....1103081.....6990922.....45002090
.26..676..3910..23637..177872..1415508...12014735...104356568....923279444
.42.1764.12994.101069.1016258.10934750..126827983..1510509752..18362140414
.68.4624.43596.438103.5893862.85697362.1356513169.22125222702.369223577680

Examples

			Some solutions for n=4 k=3
..0..1..0....0..0..0....1..0..1....0..0..0....1..1..0....1..1..1....0..0..0
..0..0..0....0..0..0....0..0..0....0..1..1....0..0..0....1..1..1....0..0..0
..1..0..1....1..0..1....0..0..0....0..1..1....0..0..0....0..1..0....1..1..0
..1..0..1....1..0..1....0..1..1....0..1..0....0..1..1....0..1..0....1..1..0
		

Crossrefs

Column 1 is A006355(n+2)
Column 2 is A206981
Column 3 is A207462
Column 4 is A207914
Row 1 is A001611(n+2)
Row 2 is A207436
Row 3 is A207939

A117591 a(n) = 2^n + Fibonacci(n).

Original entry on oeis.org

1, 3, 5, 10, 19, 37, 72, 141, 277, 546, 1079, 2137, 4240, 8425, 16761, 33378, 66523, 132669, 264728, 528469, 1055341, 2108098, 4212015, 8417265, 16823584, 33629457, 67230257, 134414146, 268753267, 537385141, 1074573864, 2148829917
Offset: 0

Views

Author

Keywords

Comments

a(3n) is even if n>0. - Robert G. Wilson v, Sep 06 2002
3 divides a(8n+1) and a(8n-1). - Enrique Pérez Herrero, Dec 29 2010

Crossrefs

Programs

Formula

G.f. (1-3*x^2)/((1-x-x^2)*(1-2*x)).
a(n) = A000079(n+1) - A099036(n) = A099036(n) + 2 * A000045(n). - Reinhard Zumkeller, Aug 15 2013

A166470 a(n) = 2^F(n+1)*3^F(n), where F(n) is the n-th Fibonacci number, A000045(n).

Original entry on oeis.org

2, 6, 12, 72, 864, 62208, 53747712, 3343537668096, 179707499645975396352, 600858794305667322270155425185792, 107978831564966913814384922944738457859243070439030784
Offset: 0

Views

Author

Matthew Vandermast, Nov 05 2009

Keywords

Crossrefs

Subsequence of A025610 and hence of A003586 and A025487.

Programs

  • Magma
    [2^Fibonacci(n+1)*3^Fibonacci(n): n in [0..14]]; // G. C. Greubel, Jul 29 2024
    
  • Mathematica
    3^First[#] 2^Last[#]&/@Partition[Fibonacci[Range[0,12]],2,1] (* Harvey P. Dale, Aug 20 2012 *)
  • PARI
    a(n)=2^fibonacci(n+1)*3^fibonacci(n) \\ Charles R Greathouse IV, Sep 19 2022
    
  • SageMath
    [2^fibonacci(n+1)*3^fibonacci(n) for n in range(15)] # G. C. Greubel, Jul 29 2024

Formula

a(n) = A000301(n+1)*A010098(n).
For n > 1, a(n) = a(n-1)*a(n-2).
For m > 1, n > 1, A166469(A002110(m)*(a(n)^k)/12) = k*Fibonacci(m+n).
A166469(a(n)) = Fibonacci(n+2) + 1 = A001611(n+2).
a(n) = 2 * A174666(n+1). - Alois P. Heinz, Sep 16 2022
a(n) = 2^(Fibonacci(n+1) + c*Fibonacci(n)), with c=log_2(3). Cf. A000301 (c=1) & A010098 (c=2). - Andrea Pinos, Sep 29 2022
a(n) = A115033(2*n+1). - David Radcliffe, May 31 2025

Extensions

Typo corrected by Matthew Vandermast, Nov 07 2009

A248156 Inverse Riordan triangle of A106513: Riordan ((1 - 2*x^2 )/(1 + x), x/(1+x)).

Original entry on oeis.org

1, -2, 1, 1, -3, 1, 0, 4, -4, 1, -1, -4, 8, -5, 1, 2, 3, -12, 13, -6, 1, -3, -1, 15, -25, 19, -7, 1, 4, -2, -16, 40, -44, 26, -8, 1, -5, 6, 14, -56, 84, -70, 34, -9, 1, 6, -11, -8, 70, -140, 154, -104, 43, -10, 1, -7, 17, -3, -78, 210, -294, 258, -147, 53, -11, 1, 8, -24, 20, 75, -288, 504, -552, 405, -200, 64, -12, 1
Offset: 0

Views

Author

Wolfdieter Lang, Oct 05 2014

Keywords

Comments

Row sums have o.g.f. (1 - 2*x)/(1 + x): [1, -1, repeat(-1, 1)].

Examples

			The triangle T(n,k) begins:
  n\k  0   1   2   3    4    5    6    7    8    9
  0:   1
  1:  -2   1
  2:   1  -3   1
  3:   0   4  -4   1
  4:  -1  -4   8  -5    1
  5:   2   3 -12  13   -6    1
  6:  -3  -1  15 -25   19   -7    1
  7:   4  -2 -16  40  -44   26   -8    1
  8:  -5   6  14 -56   84  -70   34   -9    1
  9:   6 -11  -8  70 -140  154 -104   43  -10    1
  ...
For more rows see the link.
Recurrence from A-sequence: T(5,2) = T(4,1) - T(4,2) = -4 - 8 = -12.
Recurrence from the Z-sequence: T(5,0) = -(2*(-1) + 3*(-4) + 7*8 + 17*(-5) + 41*1) = 2.
Standard recurrence for T(n,0): T(3,0) = -2*T(2,0) - T(1,0) = -2*1 - (-2) = 0.
		

Crossrefs

Columns: A248157 (k=0), A248158 (k=1), A248159 (k=2), A248160 (k=3).
Diagonals: A000012 (k=n), A022958(n+3) (k=n-1), -A034856(n-1) (k=n-2), A000297(n-4) (k=n-3), A014309(n-3) (k=n-4).
Sums: (-1)^n*A001611(n) (diagonal), (-1)^n*A083318(n) (alternating sign row).

Programs

  • Magma
    function T(n,k) // T = A248156
      if k eq n then return 1;
      elif k eq 0 then return (-1)^n*(3-n);
      else return T(n-1,k-1) - T(n-1,k);
      end if;
    end function;
    [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2025
    
  • Mathematica
    T[n_, k_] := SeriesCoefficient[x^k*(1 - 2*x^2)/(1 + x)^(k + 2), {x, 0, n}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 09 2014 *)
    T[n_, k_]:= T[n, k]= If[k==n,1, If[k==0,(-1)^n*(3-n), T[n-1,k-1]-T[n-1,k]]];
    Table[T[n,k], {n,0,25}, {k,0,n}]//Flatten (* G. C. Greubel, May 27 2025 *)
  • SageMath
    def T(n,k): # T = A248156
        if (k==n): return 1
        elif (k==0): return (-1)^n*(3-n)
        else: return T(n-1,k-1) - T(n-1,k)
    print(flatten([[T(n,k) for k in range(n+1)] for n in range(13)])) # G. C. Greubel, May 27 2025

Formula

O.g.f. row polynomials R(n,x) = Sum_{k=0..n} T(n,k)*x^k = [(-z)^n] (1 - 2*z^2)/( (1 + z)*(1 + (1-x)*z)).
O.g.f. column m: x^m*(1 - 2*x^2)/(1 + x)^(m+2), m >= 0.
The A-sequence is [1, -1], implying the recurrence T(n,k) = T(n-1, k-1) - T(n-1, k), n >= k > = 1.
The Z-sequence is -[2, 3, 7, 17, 41, 99, 239, 577, 1393, ...] = A248161, implying the recurrence T(n, 0) = Sum_{k=0..n-1} T(n-1,k)*Z(k). See the W. Lang link under A006232 for Riordan A- and Z-sequences.
The standard recurrence for the sequence for column k=0 is T(0,0) = 1 and T(n,0) = -2*T(n-1,0) - T(n-2,0), n >= 3, with T(1,0) = -2 and T(2,0) = 1.
From G. C. Greubel, May 27 2025: (Start)
Sum_{k=0..n} T(n, k) = (-1)^(n+1) + 2*([n=0] - [n=1]).
Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = the repeated pattern of [1, -2, 0, 3, -4, 2]. (End)

A301662 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 1 or 4 horizontally or vertically adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 5, 4, 4, 5, 8, 6, 6, 6, 8, 13, 9, 9, 9, 9, 13, 21, 14, 15, 13, 15, 14, 21, 34, 22, 26, 24, 24, 26, 22, 34, 55, 35, 46, 45, 46, 45, 46, 35, 55, 89, 56, 83, 89, 99, 99, 89, 83, 56, 89, 144, 90, 151, 182, 223, 254, 223, 182, 151, 90, 144, 233, 145, 276, 373, 528, 696
Offset: 1

Views

Author

R. H. Hardin, Mar 25 2018

Keywords

Comments

Table starts
..1..2...3...5....8...13....21.....34......55......89......144.......233
..2..3...4...6....9...14....22.....35......56......90......145.......234
..3..4...6...9...15...26....46.....83.....151.....276......506.......929
..5..6...9..13...24...45....89....182.....373.....773.....1604......3333
..8..9..15..24...46...99...223....528....1268....3085.....7557.....18564
.13.14..26..45...99..254...696...2013....5953...17878....54126....164525
.21.22..46..89..223..696..2335...8380...31001..116558...442314...1686894
.34.35..83.182..528.2013..8380..37679..175638..833737..4001569..19319239
.55.56.151.373.1268.5953.31001.175638.1036686.6245327.38085186.233683529

Examples

			Some solutions for n=5 k=4
..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..0..1
..1..1..0..1. .1..0..1..0. .1..1..1..0. .1..0..1..0. .1..0..1..0
..0..0..1..0. .0..1..0..1. .0..1..0..1. .0..1..0..1. .0..1..1..1
..1..1..0..1. .1..1..1..0. .1..0..0..0. .0..1..0..1. .1..0..1..0
..0..0..1..0. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..1
		

Crossrefs

Column 1 is A000045(n+1).
Column 2 is A001611(n+1).

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) -a(n-3)
k=3: a(n) = 2*a(n-1) -a(n-4)
k=4: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
k=5: [order 11]
k=6: [order 18]
k=7: [order 31]

A020706 Pisot sequences L(4,6), E(4,6).

Original entry on oeis.org

4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Subsequence of A001611, A048577. See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    I:=[4, 6, 9]; [n le 3 select I[n] else 2*Self(n-1)-Self(n-3): n in [1..40]]; // Vincenzo Librandi, Apr 20 2012
  • Mathematica
    CoefficientList[Series[(4-2*x-3*x^2)/(1-x)/(1-x-x^2),{x,0,40}],x](* Vincenzo Librandi, Apr 20 2012 *)

Formula

a(n) = Fib(n+4)+1 = A000045(n+4)+1.
a(n) = 2a(n-1) - a(n-3).
G.f.: (4-2*x-3*x^2)/(1-x)/(1-x-x^2). - Colin Barker, Feb 21 2012

A208007 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 1 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 4, 4, 6, 16, 6, 9, 36, 36, 9, 14, 81, 92, 81, 14, 22, 196, 221, 221, 196, 22, 35, 484, 618, 536, 618, 484, 35, 56, 1225, 1690, 1711, 1711, 1690, 1225, 56, 90, 3136, 4861, 4993, 7016, 4993, 4861, 3136, 90, 145, 8100, 13900, 16742, 24512, 24512, 16742, 13900
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Table starts
..2....4.....6.....9.....14......22.......35........56........90........145
..4...16....36....81....196.....484.....1225......3136......8100......21025
..6...36....92...221....618....1690.....4861.....13900.....40452.....117717
..9...81...221...536...1711....4993....16742.....53411....182247.....608142
.14..196...618..1711...7016...24512...106503....411848...1787438....7238503
.22..484..1690..4993..24512...90232...486443...2001968..10846870...47911153
.35.1225..4861.16742.106503..486443..3569728..18874239.139219755..803098636
.56.3136.13900.53411.411848.2001968.18874239.101519408.989521860.5706548155

Examples

			Some solutions for n=4 k=3
..0..1..0....0..0..0....0..1..0....1..0..1....1..0..1....0..0..0....0..1..0
..0..0..0....0..1..1....1..1..0....0..0..0....0..0..0....0..1..1....0..1..0
..0..1..1....0..0..0....0..1..0....1..1..1....0..1..1....0..0..0....0..1..1
..0..0..0....0..1..0....1..1..1....0..0..0....0..0..0....1..0..1....1..1..0
		

Crossrefs

Column 1 is A001611(n+2)
Column 2 is A207436
Column 3 is A207559

A001588 a(n) = a(n-1) + a(n-2) - 1.

Original entry on oeis.org

1, 3, 3, 5, 7, 11, 17, 27, 43, 69, 111, 179, 289, 467, 755, 1221, 1975, 3195, 5169, 8363, 13531, 21893, 35423, 57315, 92737, 150051, 242787, 392837, 635623, 1028459, 1664081, 2692539, 4356619, 7049157, 11405775, 18454931, 29860705, 48315635
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

From Henry Bottomley, Feb 20 2001: (Start)
a(n) = 2*Fibonacci(n) + 1 = A000045(n) + A001611(n).
G.f.: (1+x-3x^2)/(1-2*x+x^3). (End)
If n>=4, a(n) = floor(Phi*a(n-1)); Phi = (1 + sqrt(5))/2. - Philippe Deléham, Aug 08 2003
a(n) = F(n-2) + F(n+1) + 1, n >= 0 (where F(n) is the n-th Fibonacci number). - Zerinvary Lajos, Feb 01 2008

A048577 Pisot sequence L(3,4).

Original entry on oeis.org

3, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A001611. See A008776 for definitions of Pisot sequences.

Programs

Formula

a(n) = Fib(n+3)+1. a(n) = 2a(n-1) - a(n-3).
a(n) = A020706(n-1), n>0. [From R. J. Mathar, Oct 15 2008]
G.f.: (3-2*x-2*x^2)/((1-x)*(1-x-x^2)). [Colin Barker, Apr 16 2012]
Previous Showing 41-50 of 76 results. Next