cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 76 results. Next

A212262 a(n) = 3^n + Fibonacci(n).

Original entry on oeis.org

1, 4, 10, 29, 84, 248, 737, 2200, 6582, 19717, 59104, 177236, 531585, 1594556, 4783346, 14349517, 43047708, 129141760, 387423073, 1162265648, 3486791166, 10460364149, 31381077320, 94143207484, 282429582849, 847288684468, 2541865949722, 7625597681405
Offset: 0

Views

Author

Bruno Berselli, May 08 2012

Keywords

Crossrefs

Programs

  • Magma
    [3^n+Fibonacci(n): n in [0..27]];
    
  • Mathematica
    Table[3^n + Fibonacci[n], {n, 0, 27}]
  • PARI
    for(n=0, 27, print1(3^n+fibonacci(n)", "));
    
  • Sage
    [3^n +fibonacci(n) for n in (0..30)] # G. C. Greubel, Jul 05 2021

Formula

G.f.: (1-2*x)*(1+2*x)/((1-3*x)*(1-x-x^2)).

A226271 Index of 1/n in the Fibonacci (or rabbit) ordering of the positive rationals.

Original entry on oeis.org

1, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 1

Views

Author

M. F. Hasler, Jun 01 2013

Keywords

Comments

The Fibonacci ordering of the rationals (cf. A226080) is the sequence of rationals produced from the initial vector [1] by appending iteratively the new rationals obtained by applying the map t-> (t+1, 1/t) to the vector (cf. example).
Apart from initial terms, the same as A001611=(1, 2, 2, 3, 4, 6,...), A020706=(4,6,9,...), A048577=(3, 4, 6, ...), A000381=(2, 3, 4, ...).

Examples

			Starting from the vector [1] and applying the map t->(1+t,1/t), we get [2,1] (but ignore the number 1 which already occurred earlier), then [3,1/2], then [4,1/3,3/2,2] (where we ignore 2), etc. This yields the sequence (1,2,3,1/2,4,1/3,3/2,5,1/4,4/3,5/2,2/3,....) The unit fractions 1=1/1, 1/2, 1/3, ... occur at positions 1,4,6,9,...
		

Programs

  • Mathematica
    LinearRecurrence[{2,0,-1},{1,4,6,9},40] (* Harvey P. Dale, Feb 04 2016 *)
  • PARI
    A226271(n)=if(n>1,fibonacci(n+2))+1
    
  • PARI
    {k=1;print1(s=1,",");U=Set(g=[1]);for(n=1,9,U=setunion(U,Set(g=select(f->!setsearch(U,f), concat(apply(t->[t+1,k/t],g))))); for(i=1,#g,numerator(g[i])==1&&print1(s+i","));s+=#g)} \\ for illustrative purpose
    
  • PARI
    Vec(-x*(2*x^3+2*x^2-2*x-1)/((x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, May 11 2016

Formula

a(n) = 2*a(n-1)-a(n-3) for n>4. G.f.: -x*(2*x^3+2*x^2-2*x-1) / ((x-1)*(x^2+x-1)). - Colin Barker, Jun 03 2013
a(n) = 1+(2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5))+(1+sqrt(5))^n*(3+sqrt(5))))/sqrt(5) for n>1. - Colin Barker, May 11 2016
E.g.f.: -2*(1 + x) + exp(x) + (3*sqrt(5)*sinh(sqrt(5)*x/2) + 5*cosh(sqrt(5)*x/2))*exp(x/2)/5. - Ilya Gutkovskiy, May 11 2016

A358090 Partial inventory of positions as an irregular table; rows 1 and 2 contain 1, for n > 2, row n contains the 1-based positions of 1's, followed by the positions of 2's, 3's, etc. in rows n-2 and n-1 flattened.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 5, 1, 4, 2, 6, 3, 5, 7, 8, 1, 6, 3, 8, 2, 10, 4, 7, 5, 11, 9, 12, 13, 1, 9, 3, 13, 5, 11, 2, 15, 6, 17, 4, 10, 7, 16, 8, 12, 19, 14, 18, 20, 21, 1, 14, 5, 20, 3, 16, 7, 24, 9, 18, 2, 22, 8, 26, 4, 28, 11, 15, 6, 25, 10, 19, 12, 29, 13, 17, 31, 21, 27, 23, 32, 30, 33, 34
Offset: 1

Views

Author

Rémy Sigrist, Oct 30 2022

Keywords

Comments

This sequence is a variant of A356784; here we consider two prior rows, there all prior rows, hence the term "partial" in the name.
The n-th row contains A000045(n) terms, and is a permutation of 1..A000045(n).

Examples

			Table begins:
    1,
    1,
    1, 2,
    1, 2, 3,
    1, 3, 2, 4, 5,
    1, 4, 2, 6, 3, 5, 7, 8,
    1, 6, 3, 8, 2, 10, 4, 7, 5, 11, 9, 12, 13,
    ...
For n = 7:
- the terms in rows 5 and 6 are: 1, 3, 2, 4, 5, 1, 4, 2, 6, 3, 5, 7, 8,
- positions of 1's are: 1, 6,
- positions of 2's are: 3, 8,
- positions of 3's are: 2, 10,
- positions of 4's are: 4, 7,
- positions of 5's are: 5, 11,
- positions of 6's are: 9,
- positions of 7's are: 12,
- positions of 8's are: 13,
- so row 7 is: 1, 6, 3, 8, 2, 10, 4, 7, 5, 11, 9, 12, 13.
		

Crossrefs

See A358120 for a similar sequence.

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = 1.
T(n, 2) = A001611(n-2) for n > 2.

A358120 Partial inventory of positions as an irregular table; rows 1 and 2 contain 1, for n > 2, row n contains the 1-based positions of 1's, followed by the positions of 2's, 3's, etc. in rows n-1 and n-2 flattened.

Original entry on oeis.org

1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 5, 2, 1, 6, 5, 8, 3, 7, 2, 4, 1, 9, 7, 13, 5, 11, 8, 10, 3, 12, 2, 6, 4, 1, 14, 11, 20, 9, 18, 13, 21, 5, 16, 12, 15, 3, 19, 7, 17, 2, 8, 6, 10, 4, 1, 22, 17, 32, 13, 30, 21, 34, 9, 26, 19, 33, 15, 24, 18, 28, 5, 23, 20, 29, 3, 27, 11, 31, 7, 25, 2, 12, 10, 16, 6, 14, 4, 8
Offset: 1

Views

Author

Rémy Sigrist, Oct 30 2022

Keywords

Comments

The n-th row contains A000045(n) terms, and is a permutation of 1..A000045(n).

Examples

			Table begins:
    1,
    1,
    1, 2,
    1, 3, 2,
    1, 4, 3, 5, 2,
    1, 6, 5, 8, 3, 7, 2, 4,
    1, 9, 7, 13, 5, 11, 8, 10, 3, 12, 2, 6, 4,
    ...
For n = 7:
- terms in rows 6 and 5 are: 1, 6, 5, 8, 3, 7, 2, 4, 1, 4, 3, 5, 2,
- positions of 1's are: 1, 9,
- positions of 2's are: 7, 13,
- positions of 3's are: 5, 11,
- positions of 4's are: 8, 10,
- positions of 5's are: 3, 12,
- positions of 6's are: 2,
- positions of 7's are: 6,
- positions of 8's are: 4,
- so row 7 is: 1, 9, 7, 13, 5, 11, 8, 10, 3, 12, 2, 6, 4.
		

Crossrefs

See A358090 for a similar sequence.

Programs

  • PARI
    See Links section.

Formula

T(n, 1) = 1.
T(n, 2) = A001611(n-1) for n > 2.

A166876 a(n) = a(n-1) + Fibonacci(n), a(1)=1983.

Original entry on oeis.org

1983, 1984, 1986, 1989, 1994, 2002, 2015, 2036, 2070, 2125, 2214, 2358, 2591, 2968, 3578, 4565, 6162, 8746, 12927, 19692, 30638, 48349, 77006, 123374, 198399, 319792, 516210, 834021, 1348250, 2180290, 3526559, 5704868, 9229446, 14932333, 24159798
Offset: 1

Views

Author

Geoff Ahiakwo, Oct 22 2009

Keywords

Comments

Starting at some a(1)=s and creating further terms with the recurrence a(n)=a(n-1)+A000045(n) defines a family of sequences with recurrences a(n)= 2*a(n-1) -a(n-3).
The generating functions are x*( s+(1-s)*x+(1-s)*x^2 )/((1-x) * (1-x-x^2)).
The terms are a(n) = A000045(n+2)+s-2 = s + A001911(n-1) = (2*s+1+k)/2 where k=A166863(n-1), n>=1.
Examples: Up to offsets, s=1 yields A000071, s=2 yields A000045 shifted left thrice, s=3 yields A001611 shifted left thrice, s=4 yields A018910.
I appreciate the editing by R. J. Mathar. However I would like further analysis of the following formula. The sequence which I call GAP can have any integer as its first term, not just 1983. Thus a(1) can be 0, 1, 2, 3,... Then a(2) is always a(1)+ 1, while a(3) is a(1) + k(n)/2; where k(n) = k(n-2)+ k(n-1)+4 (This is a separate sequence submitted for consideration). [Geoff Ahiakwo, Nov 19 2009]

Examples

			For s=1983, n=3, we have k= A166863(2)= 5, a(3) = (2s+1+k)/2 = (2*1983+1+5)/2 = 1986.
For n=3, a(3)= a(1)+ k(3)/2 = a(1)+ [K(3-2)+ k(3-1)]/2 + 2 = a(1)+ 1 + 2 thus if a(1)is 0, a(3)= 3; if a(1)= 5, a(3)= 8; if a(1)=1983, a(3)= 1986, etc. [_Geoff Ahiakwo_, Nov 19 2009]
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, -1}, {1983, 1984, 1986}, 100] (* G. C. Greubel, May 27 2016 *)

Formula

a(n) = 2*a(n-1) - a(n-3).
G.f.: x*(-1983 + 1982*x + 1982*x^2)/((1-x)*(x^2+x-1)).
Let a(n)= a(1)+ k(n)/2, then G.f.: k(n)= k(n-2)+ k(n-1) + 4. - Geoff Ahiakwo, Nov 19 2009

Extensions

Definition and comments edited by R. J. Mathar, Oct 26 2009

A187893 a(0)=1, a(1)=4, a(n) = a(n-1) + a(n-2) - 1.

Original entry on oeis.org

1, 4, 4, 7, 10, 16, 25, 40, 64, 103, 166, 268, 433, 700, 1132, 1831, 2962, 4792, 7753, 12544, 20296, 32839, 53134, 85972, 139105, 225076, 364180, 589255, 953434, 1542688, 2496121, 4038808, 6534928, 10573735, 17108662, 27682396, 44791057, 72473452, 117264508
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{a=1,b=4},Table[c=a+b-1;a=b;b=c,{n,100}]]
    LinearRecurrence[{2,0,-1},{1,4,4},40] (* Harvey P. Dale, Jun 06 2020 *)
  • PARI
    a(n)=3*fibonacci(n)+1 \\ Charles R Greathouse IV, Oct 29 2016

Formula

G.f.: -x*(-1-2*x+4*x^2) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Mar 15 2011
a(n) = 1+3*|A039834(n)| = 1+3*A000045(n). - R. J. Mathar, Mar 15 2011

A228078 a(n) = 2^n - Fibonacci(n) - 1.

Original entry on oeis.org

0, 0, 2, 5, 12, 26, 55, 114, 234, 477, 968, 1958, 3951, 7958, 16006, 32157, 64548, 129474, 259559, 520106, 1041810, 2086205, 4176592, 8359950, 16730847, 33479406, 66987470, 134021309, 268117644, 536356682, 1072909783, 2146137378, 4292788986, 8586410013
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 15 2013

Keywords

Comments

a(n+1) = sum of n-th row of the triangle in A228074.

Programs

  • Haskell
    a228078 = subtract 1 . a099036
    
  • Magma
    [2^n - Fibonacci(n) - 1: n in [0..40]]; // Vincenzo Librandi, Aug 16 2013
    
  • Mathematica
    Table[(2^n - Fibonacci[n] - 1), {n, 0, 40}] (* Vincenzo Librandi, Aug 16 2013 *)
  • PARI
    concat([0,0], Vec(x^2*(3*x-2)/((x-1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 20 2015

Formula

a(n) = A000079(n) - A000045(n) - 1 = A000225(n) - A000045(n) = A000079(n) - A001611(n) = A099036(n) - 1.
From Colin Barker, Mar 20 2015: (Start)
a(n) = 4*a(n-1)-4*a(n-2)-a(n-3)+2*a(n-4) for n>3.
G.f.: x^2*(3*x-2) / ((x-1)*(2*x-1)*(x^2+x-1)). (End)
a(n) = (-1+2^n+(((1-sqrt(5))/2)^n-((1+sqrt(5))/2)^n)/sqrt(5)). - Colin Barker, Nov 02 2016

A011369 a(n+1) = a(n) - F(n) if > 0, otherwise a(n) + F(n), where F() are Fibonacci numbers; a(0) = 0.

Original entry on oeis.org

0, 0, 1, 2, 4, 1, 6, 14, 1, 22, 56, 1, 90, 234, 1, 378, 988, 1, 1598, 4182, 1, 6766, 17712, 1, 28658, 75026, 1, 121394, 317812, 1, 514230, 1346270, 1, 2178310, 5702888, 1, 9227466, 24157818, 1, 39088170, 102334156, 1, 165580142, 433494438, 1, 701408734, 1836311904
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Module[{n = 0, f}, NestList[If[(f = Fibonacci[n++]) < #, # - f, # + f] &, 0, 49]] (* Paolo Xausa, Nov 08 2024 *)
    Flatten[Join[{0, 0}, Table[{1, Fibonacci[{k, k+2}] + 1}, {k, 2, 49, 3}]]] (* Paolo Xausa, Nov 08 2024 *)
    LinearRecurrence[{1, 0, 4, -4, 0, 1, -1}, {0, 0, 1, 2, 4, 1, 6, 14, 1}, 50] (* Paolo Xausa, Nov 08 2024 *)
  • PARI
    a(n) = if (n==0, 0, my(d=a(n-1)-fibonacci(n-1)); if (d>0, d, d+2*fibonacci(n-1))) \\ Michel Marcus, Dec 29 2018
    
  • PARI
    a(n) = if (n<=1, 0, my(m=(n % 3)); if (m==0, fibonacci(n-1)+1, if (m==1, fibonacci(n)+1, 1))); \\ Michel Marcus, Dec 29 2018

Formula

a(n) = 0, if n <= 1; F(n-1)+1, if n == 0 (mod 3); F(n)+1, if n == 1 (mod 3); 1, if n == 2 (mod 3). - David W. Wilson; corrected by Michel Marcus, Dec 29 2018
For n>=1, a(n) = F(0)<+>F(1)<+>...<+>F(n-1), where operation <+> is defined in comment in A245618. - Vladimir Shevelev, Nov 05 2014
Empirical g.f.: -x^2*(2*x^6 - x^4 + 7*x^3 - 2*x^2 - x - 1) / ((x-1)*(x^2 + x - 1)*(x^4 - x^3 + 2*x^2 + x + 1)). - Colin Barker, Nov 06 2014

Extensions

Name edited by Michel Marcus, Dec 29 2018

A052661 E.g.f. (2-3x)/((1-x)(1-x-x^2)).

Original entry on oeis.org

2, 1, 4, 12, 72, 480, 4320, 45360, 564480, 7983360, 127008000, 2235340800, 43110144000, 902918016000, 20399720140800, 494300911104000, 12783824621568000, 351419178958848000, 10230993181753344000
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Programs

  • Maple
    spec := [S,{S=Union(Sequence(Z), Sequence(Prod(Z,Z, Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
  • Mathematica
    With[{nn=20},CoefficientList[Series[(2-3x)/((1-x)(1-x-x^2)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 25 2023 *)

Formula

E.g.f.: -(-2+3*x)/(-1+x+x^2)/(-1+x)
Recurrence: {a(1)=1, a(2)=4, a(0)=2, (n^3+6*n^2+11*n+6)*a(n)+(-2*n-6)*a(n+2)+a(n+3)=0}
(1+Sum(1/5*(-1+3*_alpha)*_alpha^(-1-n), _alpha =RootOf(-1+_Z+_Z^2)))*n!
a(n) = n!*A001611(n-1), n>0. - R. J. Mathar, Nov 27 2011

A128206 Inverse of number triangle A128207.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 34, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 1
Offset: 0

Views

Author

Paul Barry, Feb 19 2007

Keywords

Comments

Row sums are A001611. Subdiagonal is A000045(n+1).

Examples

			Triangle begins
1,
1, 1,
0, 1, 1,
0, 0, 2, 1,
0, 0, 0, 3, 1,
0, 0, 0, 0, 5, 1,
0, 0, 0, 0, 0, 8, 1,
0, 0, 0, 0, 0, 0, 13, 1,
0, 0, 0, 0, 0, 0, 0, 21, 1,
0, 0, 0, 0, 0, 0, 0, 0, 34, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 1
		
Previous Showing 61-70 of 76 results. Next