A212262
a(n) = 3^n + Fibonacci(n).
Original entry on oeis.org
1, 4, 10, 29, 84, 248, 737, 2200, 6582, 19717, 59104, 177236, 531585, 1594556, 4783346, 14349517, 43047708, 129141760, 387423073, 1162265648, 3486791166, 10460364149, 31381077320, 94143207484, 282429582849, 847288684468, 2541865949722, 7625597681405
Offset: 0
-
[3^n+Fibonacci(n): n in [0..27]];
-
Table[3^n + Fibonacci[n], {n, 0, 27}]
-
for(n=0, 27, print1(3^n+fibonacci(n)", "));
-
[3^n +fibonacci(n) for n in (0..30)] # G. C. Greubel, Jul 05 2021
A226271
Index of 1/n in the Fibonacci (or rabbit) ordering of the positive rationals.
Original entry on oeis.org
1, 4, 6, 9, 14, 22, 35, 56, 90, 145, 234, 378, 611, 988, 1598, 2585, 4182, 6766, 10947, 17712, 28658, 46369, 75026, 121394, 196419, 317812, 514230, 832041, 1346270, 2178310, 3524579, 5702888, 9227466, 14930353, 24157818, 39088170, 63245987, 102334156, 165580142
Offset: 1
Starting from the vector [1] and applying the map t->(1+t,1/t), we get [2,1] (but ignore the number 1 which already occurred earlier), then [3,1/2], then [4,1/3,3/2,2] (where we ignore 2), etc. This yields the sequence (1,2,3,1/2,4,1/3,3/2,5,1/4,4/3,5/2,2/3,....) The unit fractions 1=1/1, 1/2, 1/3, ... occur at positions 1,4,6,9,...
-
LinearRecurrence[{2,0,-1},{1,4,6,9},40] (* Harvey P. Dale, Feb 04 2016 *)
-
A226271(n)=if(n>1,fibonacci(n+2))+1
-
{k=1;print1(s=1,",");U=Set(g=[1]);for(n=1,9,U=setunion(U,Set(g=select(f->!setsearch(U,f), concat(apply(t->[t+1,k/t],g))))); for(i=1,#g,numerator(g[i])==1&&print1(s+i","));s+=#g)} \\ for illustrative purpose
-
Vec(-x*(2*x^3+2*x^2-2*x-1)/((x-1)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, May 11 2016
A358090
Partial inventory of positions as an irregular table; rows 1 and 2 contain 1, for n > 2, row n contains the 1-based positions of 1's, followed by the positions of 2's, 3's, etc. in rows n-2 and n-1 flattened.
Original entry on oeis.org
1, 1, 1, 2, 1, 2, 3, 1, 3, 2, 4, 5, 1, 4, 2, 6, 3, 5, 7, 8, 1, 6, 3, 8, 2, 10, 4, 7, 5, 11, 9, 12, 13, 1, 9, 3, 13, 5, 11, 2, 15, 6, 17, 4, 10, 7, 16, 8, 12, 19, 14, 18, 20, 21, 1, 14, 5, 20, 3, 16, 7, 24, 9, 18, 2, 22, 8, 26, 4, 28, 11, 15, 6, 25, 10, 19, 12, 29, 13, 17, 31, 21, 27, 23, 32, 30, 33, 34
Offset: 1
Table begins:
1,
1,
1, 2,
1, 2, 3,
1, 3, 2, 4, 5,
1, 4, 2, 6, 3, 5, 7, 8,
1, 6, 3, 8, 2, 10, 4, 7, 5, 11, 9, 12, 13,
...
For n = 7:
- the terms in rows 5 and 6 are: 1, 3, 2, 4, 5, 1, 4, 2, 6, 3, 5, 7, 8,
- positions of 1's are: 1, 6,
- positions of 2's are: 3, 8,
- positions of 3's are: 2, 10,
- positions of 4's are: 4, 7,
- positions of 5's are: 5, 11,
- positions of 6's are: 9,
- positions of 7's are: 12,
- positions of 8's are: 13,
- so row 7 is: 1, 6, 3, 8, 2, 10, 4, 7, 5, 11, 9, 12, 13.
See
A358120 for a similar sequence.
A358120
Partial inventory of positions as an irregular table; rows 1 and 2 contain 1, for n > 2, row n contains the 1-based positions of 1's, followed by the positions of 2's, 3's, etc. in rows n-1 and n-2 flattened.
Original entry on oeis.org
1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 5, 2, 1, 6, 5, 8, 3, 7, 2, 4, 1, 9, 7, 13, 5, 11, 8, 10, 3, 12, 2, 6, 4, 1, 14, 11, 20, 9, 18, 13, 21, 5, 16, 12, 15, 3, 19, 7, 17, 2, 8, 6, 10, 4, 1, 22, 17, 32, 13, 30, 21, 34, 9, 26, 19, 33, 15, 24, 18, 28, 5, 23, 20, 29, 3, 27, 11, 31, 7, 25, 2, 12, 10, 16, 6, 14, 4, 8
Offset: 1
Table begins:
1,
1,
1, 2,
1, 3, 2,
1, 4, 3, 5, 2,
1, 6, 5, 8, 3, 7, 2, 4,
1, 9, 7, 13, 5, 11, 8, 10, 3, 12, 2, 6, 4,
...
For n = 7:
- terms in rows 6 and 5 are: 1, 6, 5, 8, 3, 7, 2, 4, 1, 4, 3, 5, 2,
- positions of 1's are: 1, 9,
- positions of 2's are: 7, 13,
- positions of 3's are: 5, 11,
- positions of 4's are: 8, 10,
- positions of 5's are: 3, 12,
- positions of 6's are: 2,
- positions of 7's are: 6,
- positions of 8's are: 4,
- so row 7 is: 1, 9, 7, 13, 5, 11, 8, 10, 3, 12, 2, 6, 4.
See
A358090 for a similar sequence.
A166876
a(n) = a(n-1) + Fibonacci(n), a(1)=1983.
Original entry on oeis.org
1983, 1984, 1986, 1989, 1994, 2002, 2015, 2036, 2070, 2125, 2214, 2358, 2591, 2968, 3578, 4565, 6162, 8746, 12927, 19692, 30638, 48349, 77006, 123374, 198399, 319792, 516210, 834021, 1348250, 2180290, 3526559, 5704868, 9229446, 14932333, 24159798
Offset: 1
For s=1983, n=3, we have k= A166863(2)= 5, a(3) = (2s+1+k)/2 = (2*1983+1+5)/2 = 1986.
For n=3, a(3)= a(1)+ k(3)/2 = a(1)+ [K(3-2)+ k(3-1)]/2 + 2 = a(1)+ 1 + 2 thus if a(1)is 0, a(3)= 3; if a(1)= 5, a(3)= 8; if a(1)=1983, a(3)= 1986, etc. [_Geoff Ahiakwo_, Nov 19 2009]
-
LinearRecurrence[{2, 0, -1}, {1983, 1984, 1986}, 100] (* G. C. Greubel, May 27 2016 *)
A187893
a(0)=1, a(1)=4, a(n) = a(n-1) + a(n-2) - 1.
Original entry on oeis.org
1, 4, 4, 7, 10, 16, 25, 40, 64, 103, 166, 268, 433, 700, 1132, 1831, 2962, 4792, 7753, 12544, 20296, 32839, 53134, 85972, 139105, 225076, 364180, 589255, 953434, 1542688, 2496121, 4038808, 6534928, 10573735, 17108662, 27682396, 44791057, 72473452, 117264508
Offset: 0
-
Join[{a=1,b=4},Table[c=a+b-1;a=b;b=c,{n,100}]]
LinearRecurrence[{2,0,-1},{1,4,4},40] (* Harvey P. Dale, Jun 06 2020 *)
-
a(n)=3*fibonacci(n)+1 \\ Charles R Greathouse IV, Oct 29 2016
A228078
a(n) = 2^n - Fibonacci(n) - 1.
Original entry on oeis.org
0, 0, 2, 5, 12, 26, 55, 114, 234, 477, 968, 1958, 3951, 7958, 16006, 32157, 64548, 129474, 259559, 520106, 1041810, 2086205, 4176592, 8359950, 16730847, 33479406, 66987470, 134021309, 268117644, 536356682, 1072909783, 2146137378, 4292788986, 8586410013
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See p. 30.
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-1,2).
-
a228078 = subtract 1 . a099036
-
[2^n - Fibonacci(n) - 1: n in [0..40]]; // Vincenzo Librandi, Aug 16 2013
-
Table[(2^n - Fibonacci[n] - 1), {n, 0, 40}] (* Vincenzo Librandi, Aug 16 2013 *)
-
concat([0,0], Vec(x^2*(3*x-2)/((x-1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Mar 20 2015
A011369
a(n+1) = a(n) - F(n) if > 0, otherwise a(n) + F(n), where F() are Fibonacci numbers; a(0) = 0.
Original entry on oeis.org
0, 0, 1, 2, 4, 1, 6, 14, 1, 22, 56, 1, 90, 234, 1, 378, 988, 1, 1598, 4182, 1, 6766, 17712, 1, 28658, 75026, 1, 121394, 317812, 1, 514230, 1346270, 1, 2178310, 5702888, 1, 9227466, 24157818, 1, 39088170, 102334156, 1, 165580142, 433494438, 1, 701408734, 1836311904
Offset: 0
-
Module[{n = 0, f}, NestList[If[(f = Fibonacci[n++]) < #, # - f, # + f] &, 0, 49]] (* Paolo Xausa, Nov 08 2024 *)
Flatten[Join[{0, 0}, Table[{1, Fibonacci[{k, k+2}] + 1}, {k, 2, 49, 3}]]] (* Paolo Xausa, Nov 08 2024 *)
LinearRecurrence[{1, 0, 4, -4, 0, 1, -1}, {0, 0, 1, 2, 4, 1, 6, 14, 1}, 50] (* Paolo Xausa, Nov 08 2024 *)
-
a(n) = if (n==0, 0, my(d=a(n-1)-fibonacci(n-1)); if (d>0, d, d+2*fibonacci(n-1))) \\ Michel Marcus, Dec 29 2018
-
a(n) = if (n<=1, 0, my(m=(n % 3)); if (m==0, fibonacci(n-1)+1, if (m==1, fibonacci(n)+1, 1))); \\ Michel Marcus, Dec 29 2018
A052661
E.g.f. (2-3x)/((1-x)(1-x-x^2)).
Original entry on oeis.org
2, 1, 4, 12, 72, 480, 4320, 45360, 564480, 7983360, 127008000, 2235340800, 43110144000, 902918016000, 20399720140800, 494300911104000, 12783824621568000, 351419178958848000, 10230993181753344000
Offset: 0
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
-
spec := [S,{S=Union(Sequence(Z), Sequence(Prod(Z,Z, Sequence(Z))))},labeled]: seq(combstruct[count](spec,size=n), n=0..20);
-
With[{nn=20},CoefficientList[Series[(2-3x)/((1-x)(1-x-x^2)),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 25 2023 *)
A128206
Inverse of number triangle A128207.
Original entry on oeis.org
1, 1, 1, 0, 1, 1, 0, 0, 2, 1, 0, 0, 0, 3, 1, 0, 0, 0, 0, 5, 1, 0, 0, 0, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 0, 0, 0, 21, 1, 0, 0, 0, 0, 0, 0, 0, 0, 34, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 1
Offset: 0
Triangle begins
1,
1, 1,
0, 1, 1,
0, 0, 2, 1,
0, 0, 0, 3, 1,
0, 0, 0, 0, 5, 1,
0, 0, 0, 0, 0, 8, 1,
0, 0, 0, 0, 0, 0, 13, 1,
0, 0, 0, 0, 0, 0, 0, 21, 1,
0, 0, 0, 0, 0, 0, 0, 0, 34, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 55, 1
Comments