cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A054730 Odd n such that genus of modular curve X_0(N) is never equal to n.

Original entry on oeis.org

49267, 74135, 94091, 96463, 102727, 107643, 118639, 138483, 145125, 181703, 182675, 208523, 221943, 237387, 240735, 245263, 255783, 267765, 269627, 272583, 277943, 280647, 283887, 286815, 309663, 313447, 322435, 326355, 336675, 347823, 352719
Offset: 1

Views

Author

Janos A. Csirik, Apr 21 2000

Keywords

Comments

There are 4329 odd integers in the sequence less than 10^7. - Gheorghe Coserea, May 23 2016

References

  • J. A. Csirik, The genus of X_0(N) is not 150, preprint, 2000.

Crossrefs

Programs

  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    scan(n) = {
      my(inv = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k);
           if (g <= n && inv[g+1] == -1, inv[g+1] = k));
      select(x->(x%2==1), apply(x->(x-1), Vec(select(x->x==-1, inv, 1))));
    };
    scan(400*1000)

Extensions

More terms from Gheorghe Coserea, May 23 2016
Offset corrected by Gheorghe Coserea, May 23 2016

A111248 Dimension of the space of weight 2 modular forms for Gamma_0(n).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 3, 3, 3, 2, 5, 1, 4, 4, 5, 2, 7, 2, 6, 4, 5, 3, 8, 5, 5, 6, 7, 3, 10, 3, 8, 6, 6, 6, 12, 3, 7, 6, 10, 4, 12, 4, 9, 10, 8, 5, 14, 8, 13, 8, 10, 5, 15, 8, 12, 8, 9, 6, 18, 5, 10, 12, 14, 8, 16, 6, 12, 10, 16, 7, 20, 6, 11, 16, 13, 10, 18, 7, 18, 15, 12, 8, 22, 10, 13, 12, 16, 8, 26
Offset: 1

Views

Author

Steven Finch, Oct 31 2005

Keywords

Comments

Equivalently, this is the dimension of the space of level n, weight 2 modular forms. - Steven Finch, Apr 03 2009

Crossrefs

Cf. A001616, A001617. [Steven Finch, Apr 03 2009]
Cf. A006571.

Programs

  • Magma
    [ Dimension(ModularForms(Gamma0(n), 2)) : n in [1..100] ]; // Klaus Brockhaus, Mar 10 2011

Formula

a(n) = A001617(n) + A001616(n) - 1. - Steven Finch, Apr 03 2009

Extensions

More terms from Steven Finch, Apr 03 2009

A116569 a(n) = (x^3 - x) / 6, where x is the genus of the modular curve X_0(p) for p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 4, 4, 10, 10, 20, 10, 20, 35, 20, 35, 56, 56, 56, 84, 84, 120, 84, 120, 165, 220, 220, 220, 286, 286, 286, 364, 455, 455, 560, 455, 680, 560, 680, 680, 816, 969, 1140, 969
Offset: 1

Views

Author

Roger L. Bagula, Mar 18 2006

Keywords

Comments

From Mia Boudreau, Jul 29 2025: (Start)
Previously named "Ono prime weight function divided by 6.".
See A001617 and A116563 for definition of genus of modular curve for X_0(n). (End)

Examples

			a(415) = 2218636 = (A116563(415)^3 - A116563(415)) / 6.
		

Crossrefs

Programs

  • Java
    long a(int n){
     long p = prime(n);
     long k = (p - switch((int)(p % 12)){
      case 1 -> 13; case 2 -> 5; case 3 -> 7; default -> -1;}) / 12;
     return k * (k - 1) * (k + 1) / 6;} // Mia Boudreau, Jul 29 2025
  • Mathematica
    g[1] = 1; g[2] = 1;
    g[n_] := (Prime[n] - 13)/12 /; Mod[Prime[n], 12] - 1 == 0;
    g[n_] := (Prime[n] - 5)/12 /; Mod[Prime[n], 12] - 5 == 0;
    g[n_] := (Prime[n] - 7)/12 /; Mod[Prime[n], 12] - 7 == 0;
    g[n_] := (Prime[n] + 1)/12 /; Mod[Prime[n], 12] - 11 == 0;
    Table[g[n]*(g[n]^2 - 1)/6, {n, 1, 50}]
  • PARI
    a(n) = {if (n < 3, g = 1, p = prime(n); m = p % 12; g = if (m==1, (p-13)/12, if (m==5, (p-5)/12, if (m==7, (p-7)/12, if (m==11, (p+1)/12))))); g*(g^2-1)/6;} \\ Michel Marcus, Apr 06 2018
    

Formula

a(n) = (A116563(n)^3 - A116563(n)) / 6. - Mia Boudreau, Jul 29 2025

Extensions

Offset corrected by Michel Marcus, Apr 06 2018

A273510 a(n) is the largest level N such that genus of modular curve X_0(N) is n (or -1 if no such curve exists).

Original entry on oeis.org

25, 49, 50, 64, 81, 75, 121, 100, 169, 128, 127, 147, 157, 163, 181, 193, 199, 289, 229, 243, 239, 257, 361, 283, 293, 313, 343, 337, 349, 353, 373, 379, 397, 409, 421, 529, 439, 457, 463, 467, 487, 499, 509, 523, 541, 547, 557, 577, 625, 601, 613, 619, 631, 643, 661, 673, 677, 691, 841, 667, 733
Offset: 0

Views

Author

Gheorghe Coserea, May 23 2016

Keywords

Comments

a(10^7) = 120000007 is the largest value in the first 1+10^7 terms of the sequence.
The exception occurs first at a(150) = -1. - Georg Fischer, Feb 15 2019

Examples

			For n = 0 we have 0 = A001617(k) when k is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 25 (A091401); the largest of this values is 25 therefore a(0) = 25.
For n = 1 we have 1 = A001617(k) when k is 11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49 (A091403); the largest of this values is 49 therefore a(1) = 49.
For n = 2 we have 2 = A001617(k) when k is 22, 23, 26, 28, 29, 31, 37, 50 (A091404); the largest of this values is 50 therefore a(2) = 50.
For n = 150 (= A054729(1)) we have 150 <> A001617(k) for all k therefore a(150) = -1.
		

Crossrefs

Programs

  • Mathematica
    a1617[n_] := If[n < 1, 0, 1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d, Divisors[n]}] - Count[(#^2 - # + 1)/n& /@ Range[n], ?IntegerQ]/3 - Count[(#^2 + 1)/n& /@ Range[n], ?IntegerQ]/4];
    seq[n_] := Module[{a, bnd}, a = Table[-1, {n+1}]; bnd = 12n + 18 Floor[Sqrt[n] ] + 100; For[k = 1, k <= bnd, k++, g = a1617[k]; If[g <= n, a[[g+1]] = k]]; a];
    seq[60] (* Jean-François Alcover, Nov 20 2018, after Gheorghe Coserea and Michael Somos in A001617 *)
  • PARI
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    seq(n) = {
      my(a = vector(n+1, g, -1), bnd = 12*n + 18*sqrtint(n) + 100, g);
      for (k = 1, bnd, g = A001617(k); if (g <= n, a[g+1] = k));
      return(a);
    };
    seq(60)

Formula

Let S(n) = {k, n = A001617(k)}; if the level set S(n) is not empty then a(n) = max S(n) and A054728(n) = min S(n) and A273445(n) = card S(n), otherwise a(n) = A054728(n) = -1 and A273445(n) = 0.

A276181 Fricke's 37 cases for two-valued modular equations.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 35, 36, 39, 41, 47, 49, 50, 59, 71
Offset: 1

Views

Author

Gheorghe Coserea, Oct 17 2016

Keywords

Crossrefs

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    select(x->(x>1), Vec(select(x->x==0, vector(100, n, A276183(n)), 1)))

Formula

Numbers n>1 such that 0 = A276183(n).

A365138 Genus of the quotient of the modular curve X_1(n) by the Fricke involution.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 1, 3, 1, 2, 3, 5, 2, 6, 4, 6, 5, 10, 4, 12, 8, 10, 10, 11, 8, 20, 13, 15, 12, 24, 12, 28, 17, 20, 22, 33, 18, 34, 23, 31, 27, 45, 25, 39, 29, 42, 39, 56, 28, 62, 44, 47, 46, 59, 39, 77, 51, 65, 48, 85, 48, 93, 66, 71, 67, 89, 60, 109
Offset: 1

Views

Author

David Jao, Aug 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    A000003[n_] :=
     Length[Select[
       Flatten[#, 1] &@
        Table[{i, j, (j^2 + 4 n)/(4 i)}, {i, Sqrt[4 n/3]}, {j, 1 - i, i}],
        Mod[#3, 1] == 0 && #3 >= # &&
           GCD[##] == 1 && ! (# == #3 && #2 < 0) & @@ # &]];
    A001617[n_] :=
      If[n < 1, 0,
       1 + Sum[MoebiusMu[d]^2 n/d/12 - EulerPhi[GCD[d, n/d]]/2, {d,
          Divisors@n}] -
        Count[(#^2 - # + 1)/n & /@ Range[n], _?IntegerQ]/3 -
        Count[(#^2 + 1)/n & /@ Range[n], _?IntegerQ]/4];
    A029937[n_] =
      If[n < 5, 0,
       1 + Sum[d^2*MoebiusMu[n/d]/24 - EulerPhi[d]*EulerPhi[n/d]/4, {d,
          Divisors[n]}]];
    A276183[n_] :=
     If[0 <= n <= 4,
      0, (A001617[n] + 1)/2 -
       If[Mod[n, 8] == 3, 4, If[Mod[n, 8] == 7, 6, 3]]*A000003[n]/12];
    A365138[n_] := (A029937[n] - A001617[n])/2 + A276183[n]

Formula

a(n) = (A029937(n) - A001617(n))/2 + A276183(n).

A276182 Numbers N such that the modular curve X_0(N) is hyperelliptic.

Original entry on oeis.org

22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 40, 41, 46, 47, 48, 50, 59, 71
Offset: 1

Views

Author

Gheorghe Coserea, Oct 17 2016

Keywords

Comments

"The only case where the hyperelliptic involution is not defined by an element of SL(2, R) is N=37."
"For N = 40, 48 the hyperelliptic involution v is not of Atkin-Lehner type. The remaining sixteen values are listed in the table below, together with their genera and hyperelliptic involutions v." (see Ogg link)
n N g v
1 22 2 11
2 23 2 23
3 26 2 26
4 28 2 7
5 29 2 29
6 30 3 15
7 31 2 31
8 33 3 11
9 35 3 35
10 39 3 39
11 41 3 41
12 46 5 23
13 47 4 47
14 50 2 50
15 59 5 59
16 71 6 71

References

  • J. S. Balakrishnan, B. Mazur, and N. Dogra, Ogg's torsion conjecture: fifty years later, Bull. Amer. Math. Soc., 62:2 (2025), 235-268.

Crossrefs

A276184 Numbers n such that A276183(n) = 1.

Original entry on oeis.org

22, 28, 30, 33, 34, 37, 38, 40, 43, 44, 45, 48, 51, 53, 54, 55, 56, 61, 63, 64, 65, 75, 79, 81, 83, 89, 95, 101, 119, 131
Offset: 1

Views

Author

Gheorghe Coserea, Oct 22 2016

Keywords

Crossrefs

Cf. A276183.

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    Vec(select(x->x==1, vector(5000, n, A276183(n)), 1))

A276185 Numbers n such that A276183(n) = 2.

Original entry on oeis.org

42, 46, 52, 57, 62, 67, 68, 69, 72, 73, 74, 77, 80, 87, 91, 98, 103, 107, 111, 121, 125, 143, 167, 191
Offset: 1

Views

Author

Gheorghe Coserea, Oct 22 2016

Keywords

Crossrefs

Cf. A276183.

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    Vec(select(x->x==2, vector(500, n, A276183(n)), 1))

A276186 Numbers n such that A276183(n) = 3.

Original entry on oeis.org

58, 60, 66, 76, 85, 86, 96, 97, 99, 100, 104, 109, 113, 127, 128, 139, 149, 151, 169, 179, 239
Offset: 1

Views

Author

Gheorghe Coserea, Oct 22 2016

Keywords

Crossrefs

Cf. A276183.

Programs

  • PARI
    A000003(n) = qfbclassno(-4*n);
    A000089(n) = {
      if (n%4 == 0 || n%4 == 3, return(0));
      if (n%2 == 0, n \= 2);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 4 == 3, 0, 2));
    };
    A000086(n) = {
      if (n%9 == 0 || n%3 == 2, return(0));
      if (n%3 == 0, n \= 3);
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, if (f[k, 1] % 3 == 2, 0, 2));
    };
    A001615(n) = {
      my(f = factor(n), fsz = matsize(f)[1],
         g = prod(k=1, fsz, (f[k, 1]+1)),
         h = prod(k=1, fsz, f[k, 1]));
      return((n*g)\h);
    };
    A001616(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      prod(k = 1, fsz, f[k, 1]^(f[k, 2]\2) + f[k, 1]^((f[k, 2]-1)\2));
    };
    A001617(n) = 1 + A001615(n)/12 - A000089(n)/4 - A000086(n)/3 - A001616(n)/2;
    A276183(n) = {
      my(r = if (n%8 == 3, 4, n%8 == 7, 6, 3));
      if (n < 5, 0, (1 + A001617(n))/2 -  r * A000003(n)/12);
    };
    Vec(select(x->x==3, vector(500, n, A276183(n)), 1))
Previous Showing 11-20 of 20 results.