cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 68 results. Next

A065418 Decimal expansion of Hardy-Littlewood constant Product_{p prime >= 5} (1-(3*p-1)/(p-1)^3).

Original entry on oeis.org

6, 3, 5, 1, 6, 6, 3, 5, 4, 6, 0, 4, 2, 7, 1, 2, 0, 7, 2, 0, 6, 6, 9, 6, 5, 9, 1, 2, 7, 2, 5, 2, 2, 4, 1, 7, 3, 4, 2, 0, 6, 5, 6, 8, 7, 3, 3, 2, 3, 7, 2, 4, 5, 0, 8, 9, 9, 7, 3, 4, 4, 6, 0, 4, 8, 6, 7, 8, 4, 6, 1, 3, 1, 1, 6, 1, 3, 9, 1, 8, 8, 2, 0, 8, 0, 2, 9, 1, 3, 8, 6, 7, 6, 4, 0, 4, 6, 1, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

For comparison: Product_{n>=5} (1-(3n-1)/(n-1)^3) = 3/8 . - R. J. Mathar, Feb 25 2009

Examples

			0.635166354604271207206696591272522417342...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{4, -3}, {-6, -24}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 17 2016 *)
  • PARI
    prodeulerrat(1-(3*p-1)/(p-1)^3, 1, 5) \\ Amiram Eldar, Mar 10 2021

Formula

The constant equals Product_{n>=2} (zeta(n)*(1-2^-n)*(1-3^-n))^-A027376(n). - Michael Somos, Apr 05 2003

A032164 Number of aperiodic necklaces of n beads of 6 colors; dimensions of free Lie algebras.

Original entry on oeis.org

1, 6, 15, 70, 315, 1554, 7735, 39990, 209790, 1119720, 6045837, 32981550, 181394535, 1004668770, 5597420295, 31345665106, 176319264240, 995685849690, 5642219252460, 32071565263710, 182807918979777
Offset: 0

Views

Author

Keywords

Comments

From Petros Hadjicostas, Aug 31 2018: (Start)
For each m >= 1, the CHK[m] transform of sequence (c(n): n>=1) has generating function B_m(x) = (1/m)*Sum_{d|m} mu(d)*C(x^d)^{m/d}, where C(x) = Sum_{n>=1} c(n)*x^n is the g.f. of (c(n): n >= 1). As a result, the CHK transform of sequence (c(n): n >= 1) has generating function B(x) = Sum_{m >= 1} B_m(x) = -Sum_{n >= 1} (mu(n)/n)*log(1 - C(x^n)).
For n, k >= 1, let a_k(n) = number of aperiodic necklaces of n beads of k colors. We then have (a_k(n): n >= 1) = CHK(c_k(n): n >= 1), where c_k(1) = k and c_k(n) = 0 for all n >= 2, with g.f. C_k(x) = Sum_{n >= 1} c_k(n)*x^n = k*x. The g.f. of (a_k(n): n >= 1) is A_k(x) = Sum_{n >= 1} a_k(n)*x^n = -Sum_{n >= 1} (mu(n)/n)*log(1-k*x^n), which is Herbert Kociemba's general formula below (except for the initial term a_k(0) = 1).
For the current sequence, k = 6.
(End)

References

  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Column 6 of A074650.
Cf. A001037, A001692 (5 colors).
Cf. A054721.

Programs

  • Mathematica
    f[d_] := MoebiusMu[d]*6^(n/d)/n; a[n_] := Total[f /@ Divisors[n]]; a[0] = 1; Table[a[n], {n, 0, 20}](* Jean-François Alcover, Nov 07 2011 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,6],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n) = if (n==0, 1, sumdiv(n, d, moebius(d)*6^(n/d)/n)); \\ Michel Marcus, Dec 01 2015

Formula

"CHK" (necklace, identity, unlabeled) transform of 6, 0, 0, 0...
a(n) = Sum_{d|n} mu(d)*6^(n/d)/n, for n>0.
G.f.: k=6, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016

A059861 a(n) = Product_{i=2..n} (prime(i) - 2).

Original entry on oeis.org

1, 1, 3, 15, 135, 1485, 22275, 378675, 7952175, 214708725, 6226553025, 217929355875, 8499244879125, 348469040044125, 15681106801985625, 799736446901266875, 45584977473372211875, 2689513670928960500625
Offset: 1

Views

Author

Labos Elemer, Feb 28 2001

Keywords

Comments

Arises in Hardy-Littlewood k-tuple conjecture. Also a(n) is the exact number of d=2 and also d=4 differences in dRRS[modulus=n-th primorial]; see A049296 (dRRS[m]=set of first differences of reduced residue system modulo m).
For n>1 this is the determinant of the (n-1) X (n-1) matrix whose diagonal is A006093(n) = {1, 2, 4, 6, 10, 12, 16, 18..} = the first primes minus 1 and all other elements are 1's. The determinant begins: / (2-1) 1 1 1 1 1 1 ... / 1 (3-1) 1 1 1 1 1 ... / 1 1 (5-1) 1 1 1 1 ... / 1 1 1 (7-1) 1 1 1 ... / 1 1 1 1 (11-1) 1 1 ... / 1 1 1 1 1 (13-1) 1 ... - Alexander Adamchuk, May 21 2006
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 1, 3, 15, ...) dot (1, -2, 4, -6, 10, ...).
a(6) = 135 = (1, 1, 1, 3, 15) dot (1, -2, 4, -6, 10) = (1, -2, 4, -18, 150). (End)

Examples

			n=4, a(4) = 1*(3-2)*(5-2)*(7-2) = 15. 48 first terms of A049296 give one complete period of dRRS[210], in which 15 d=2, 15 d=4 and 18 larger differences occur. For n=1, 2, ..., 5 in the periods of length {1, 2, 8, 48, 480, ...} [see A005867] the number of d=2 and also d=4 differences is {1, 1, 3, 15, 135, ..}
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.
  • R. K. Guy, Unsolved Problems in Number Theory, Sections A8, A1.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
  • G. Polya, Mathematics and Plausible Reasoning, Vol. II, Appendix Princeton UP, 1954.

Crossrefs

Programs

  • Mathematica
    Table[ Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ], {n, 2, 20} ] (* Alexander Adamchuk, May 21 2006 *)
    Table[Product[Prime@k - 2, {k, 2, n}], {n, 1, 18}] (* Harlan J. Brothers, Jul 02 2018 *)
    a[1] = 1; a[n_] := a[n] = a[n - 1] (Prime[n] - 2);
    Table[a[n], {n, 18}]  (* Harlan J. Brothers, Jul 02 2018 *)
    Join[{1},FoldList[Times,Prime[Range[2,20]]-2]] (* Harvey P. Dale, Apr 19 2023 *)
  • PARI
    a(n) = prod(i=2, n, prime(i)-2); \\ Michel Marcus, Apr 16 2017

Formula

a(n) = Det[ DiagonalMatrix[ Table[ Prime[i-1] - 2, {i, 2, n} ] ] + 1 ] for n>1. - Alexander Adamchuk, May 21 2006
a(n) = a(n-1) * (A000040(n) - 2) for n > 1. - A.H.M. Smeets, Dec 14 2019
a(n) = |{r | 0 <= r < primorial(n) and gcd(r, primorial(n)) = 1 and gcd(r + 2, primorial(n)) = 1}|. - Greg Tener, Oct 22 2021

Extensions

Offset corrected by A.H.M. Smeets, Dec 14 2019

A065419 Decimal expansion of Hardy-Littlewood constant Product_{p prime >= 5} (1-(6*p^2-4*p+1)/(p-1)^4).

Original entry on oeis.org

3, 0, 7, 4, 9, 4, 8, 7, 8, 7, 5, 8, 3, 2, 7, 0, 9, 3, 1, 2, 3, 3, 5, 4, 4, 8, 6, 0, 7, 1, 0, 7, 6, 8, 5, 3, 0, 2, 2, 1, 7, 8, 5, 1, 9, 9, 5, 0, 6, 6, 3, 9, 2, 8, 2, 9, 8, 3, 0, 8, 3, 9, 6, 2, 6, 0, 8, 8, 8, 7, 6, 7, 2, 9, 6, 6, 9, 2, 9, 9, 4, 8, 1, 3, 8, 4, 0, 2, 6, 4, 6, 8, 1, 7, 1, 4, 9, 3, 8
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

For comparison: Product_{n>=5} (1-(6n^2-4n+1)/(n-1)^4) = 3/32. - R. J. Mathar, Feb 25 2009

Examples

			0.30749487875832709312335448607107685302...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1000; digits = 99; terms = 1000; P[n_] := PrimeZetaP[ n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{5, -4}, {-12, -60}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 17 2016 *)
  • PARI
    prodeulerrat(1-(6*p^2-4*p+1)/(p-1)^4, 1, 5) \\ Amiram Eldar, Mar 10 2021

Extensions

A sign in the definition corrected by R. J. Mathar, Feb 25 2009

A065472 Decimal expansion of Product_{p prime} (1 - 1/(p+1)^2).

Original entry on oeis.org

7, 7, 5, 8, 8, 3, 5, 1, 0, 0, 0, 3, 8, 9, 5, 4, 9, 9, 6, 2, 0, 4, 0, 4, 2, 8, 4, 4, 2, 7, 9, 0, 0, 6, 1, 1, 4, 8, 2, 4, 1, 3, 4, 6, 5, 9, 7, 3, 0, 1, 6, 2, 7, 6, 2, 2, 1, 0, 6, 3, 1, 1, 6, 4, 6, 1, 3, 8, 7, 6, 4, 9, 2, 4, 9, 7, 4, 5, 6, 9, 9, 5, 3, 7, 1, 9, 3, 1, 3, 2, 3, 3, 1, 2, 8, 1, 4, 2
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Comments

The probablity that two randomly chosen squarefree numbers are coprime. - Amiram Eldar, Aug 04 2020
The asymptotic mean of A001157(n)/(n*A000203(n)). - Richard R. Forberg, May 27 2023

Examples

			0.7758835100038954996204042844279...
		

Crossrefs

Programs

  • Mathematica
    digits = 98; Exp[NSum[(-1)^n*(2^(n-1)-2)*PrimeZetaP[n-1]/(n-1), {n, 3, Infinity}, WorkingPrecision -> 2 digits, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p+1)^2) \\ Amiram Eldar, Mar 17 2021

Formula

Equals lim_{n->oo} (Pi^2/(3*n^2*log(n))) * Sum_{k=1..n} A145388(k). - Amiram Eldar, May 14 2019
Equals Sum_{k>=1} mu(k)/sigma(k)^2, where mu is the Möbius function (A008683) and sigma(k) is the sum of divisors of k (A000203). - Amiram Eldar, Jan 14 2022

Extensions

Definition corrected by Dan Asimov, Apr 15 2006

A065485 Decimal expansion of Murata's constant Product_{p prime} (1 + 1/(p-1)^2).

Original entry on oeis.org

2, 8, 2, 6, 4, 1, 9, 9, 9, 7, 0, 6, 7, 5, 9, 1, 5, 7, 5, 5, 4, 6, 3, 9, 1, 7, 4, 7, 2, 3, 6, 9, 5, 3, 7, 4, 9, 0, 1, 3, 0, 4, 1, 1, 0, 5, 4, 5, 9, 2, 6, 6, 8, 7, 6, 1, 7, 9, 7, 4, 5, 8, 3, 4, 5, 3, 0, 7, 5, 7, 6, 2, 4, 4, 5, 9, 7, 6, 2, 4, 0, 5, 5, 3, 3, 4, 5, 8, 6, 6, 4, 9, 8, 8, 1, 8, 4, 4, 5
Offset: 1

Views

Author

N. J. A. Sloane, Nov 19 2001; edited Sep 16 2007 at the suggestion of R. J. Mathar

Keywords

Examples

			2.8264199970675915755463917472369537490...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 2.4 and 2.7, pp. 106, 117.

Crossrefs

Programs

  • Mathematica
    digits = 99; terms = 1000; $MaxExtraPrecision = 500; r[n_Integer] := 2 - (1-I)^(n+1) - (1+I)^(n+1); NSum[r[n-1]*PrimeZetaP[n]/n, {n, 2, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10] // Exp // RealDigits[ #, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    prodeulerrat(1 + 1/(p-1)^2) \\ Vaclav Kotesovec, Sep 19 2020

Formula

Equals lim_{k->oo} (1/pi(k)) * Sum_{p prime, p <= k} (p-1)/phi(p-1), where pi(k) = A000720(k) and phi(k) = A000010(k) (Murata, 1991). - Amiram Eldar, Jul 31 2020
Equals Sum_{k>=1} mu(k)^2/phi(k)^2, where mu is the Möbius function (A008683) and phi is the Euler totient function (A000010). - Amiram Eldar, Jan 14 2022

A054720 Number of 5-ary sequences with primitive period n.

Original entry on oeis.org

1, 5, 20, 120, 600, 3120, 15480, 78120, 390000, 1953000, 9762480, 48828120, 244124400, 1220703120, 6103437480, 30517574880, 152587500000, 762939453120, 3814695297000, 19073486328120, 95367421874400, 476837158124880, 2384185742187480, 11920928955078120
Offset: 0

Views

Author

N. J. A. Sloane, Apr 20 2000

Keywords

Comments

Equivalently, output sequences with primitive period n from a simple cycling shift register.

References

  • E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.

Crossrefs

Column k=5 of A143324.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1, add(mobius(d)*5^(n/d), d=divisors(n))):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 21 2012
  • Mathematica
    a[0] = 1; a[n_] := Sum[MoebiusMu[d]*5^(n/d), {d, Divisors[n]}]; Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Mar 11 2014 *)

Formula

Sum mu(d)*5^(n/d); d|n.
a(0) = 1, a(n) = n * A001692(n).
G.f.: 1 + 5 * Sum_{k>=1} mu(k) * x^k / (1 - 5*x^k). - Ilya Gutkovskiy, Apr 14 2021

A065415 Decimal expansion of Product_{p prime} (1-1/(p^4-p^3)).

Original entry on oeis.org

8, 5, 6, 5, 4, 0, 4, 4, 4, 8, 5, 3, 5, 4, 2, 1, 7, 4, 4, 2, 6, 1, 6, 7, 9, 8, 4, 1, 3, 5, 9, 5, 3, 8, 8, 2, 1, 6, 6, 5, 7, 2, 8, 0, 0, 3, 1, 7, 6, 5, 2, 1, 4, 0, 3, 2, 5, 4, 8, 3, 2, 1, 6, 1, 6, 9, 4, 3, 1, 4, 4, 9, 8, 0, 3, 5, 9, 8, 9, 6, 3, 9, 2, 8, 3, 2, 3, 1, 1, 3, 0, 8, 2, 5, 9, 2, 0, 7, 1
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.85654044485354217442616798413595388...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 1, -1}, {0, 0, 0, 4, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 3, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^4-p^3)) \\ Amiram Eldar, Mar 13 2021

A065416 Decimal expansion of Product_{p prime} (1-1/(p^5-p^4)).

Original entry on oeis.org

9, 3, 1, 2, 6, 5, 1, 8, 4, 1, 6, 0, 0, 0, 4, 3, 3, 4, 3, 8, 9, 2, 3, 7, 2, 0, 5, 5, 5, 0, 6, 7, 6, 9, 8, 2, 5, 5, 8, 4, 2, 3, 7, 3, 4, 5, 8, 7, 8, 0, 1, 0, 5, 9, 0, 1, 6, 9, 8, 7, 7, 1, 5, 4, 5, 9, 5, 4, 3, 3, 6, 0, 2, 8, 6, 8, 2, 3, 8, 5, 1, 5, 8, 2, 5, 1, 2, 8, 9, 6, 4, 8, 1, 0, 8, 9, 5, 1, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Examples

			0.93126518416000433438923720555067698...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.4, p. 105.

Crossrefs

Programs

  • Mathematica
    digits = 99; $MaxExtraPrecision = 400; m0 = 1000; dm = 100; Clear[s]; LR = LinearRecurrence[{2, -1, 0, 0, 1, -1}, {0, 0, 0, 0, 5, 6}, 2 m0]; r[n_Integer] := LR[[n]]; s[m_] := s[m] = NSum[-r[n] PrimeZetaP[n]/n, {n, 5, m}, NSumTerms -> m0, WorkingPrecision -> 400] // Exp; s[m0]; s[m = m0 + dm]; While[RealDigits[s[m], 10, digits][[1]] != RealDigits[s[m-dm], 10, digits][[1]], Print[m]; m = m+dm]; RealDigits[s[m], 10, digits][[1]] (* Jean-François Alcover, Apr 15 2016 *)
  • PARI
    prodeulerrat(1-1/(p^5-p^4)) \\ Amiram Eldar, Mar 12 2021

A065469 Decimal expansion of Product_{p prime} (1 - 1/(p^2-1)).

Original entry on oeis.org

5, 3, 0, 7, 1, 1, 8, 2, 0, 4, 7, 2, 0, 4, 4, 7, 9, 4, 9, 7, 2, 9, 4, 3, 7, 7, 2, 4, 7, 2, 9, 7, 7, 1, 7, 0, 9, 4, 7, 8, 6, 1, 0, 2, 2, 2, 0, 9, 8, 6, 0, 4, 0, 3, 4, 7, 5, 8, 1, 9, 0, 4, 9, 2, 8, 0, 9, 0, 5, 0, 6, 7, 9, 2, 6, 0, 9, 5, 7, 9, 0, 6, 3, 8, 6, 3, 8, 1, 9, 2, 4, 5, 6, 3, 6, 2, 3, 5
Offset: 0

Views

Author

N. J. A. Sloane, Nov 19 2001

Keywords

Examples

			0.53071182047204479497294377247...
		

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 98; terms = 800; P[n_] := PrimeZetaP[n]; LR = LinearRecurrence[{0, 3, 0, -2}, {0, 0, -2, 0}, terms + 10]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 18 2016 *)
  • PARI
    prodeulerrat(1 - 1/(p^2-1)) \\ Amiram Eldar, Mar 13 2021

Formula

Product of A013661 by A065474. - R. J. Mathar, Mar 26 2011
From Amiram Eldar, Jan 14 2022: (Start)
Equals Sum_{k>=1} mu(k)/(phi(k)*sigma(k)), where mu is the Möbius function (A008683), phi is the Euler totient function (A000010) and sigma(k) is the sum of divisors of k (A000203).
Equals Sum_{k>=1} mu(k)/J_2(k), where J_2 is Jordan's totient function (A007434). (End)
Previous Showing 21-30 of 68 results. Next