1, -7, 1, 56, -15, 1, -504, 191, -24, 1, 5040, -2414, 431, -34, 1, -55440, 31594, -7155, 805, -45, 1, 665280, -434568, 117454, -16815, 1345, -57, 1, -8648640, 6314664, -1961470, 336049, -34300, 2086, -70, 1, 121080960, -97053936, 33775244, -6666156, 816249, -63504, 3066, -84, 1
Offset: 0
A157386
A partition product of Stirling_1 type [parameter k = -6] with biggest-part statistic (triangle read by rows).
Original entry on oeis.org
1, 1, 6, 1, 18, 42, 1, 144, 168, 336, 1, 600, 2940, 1680, 3024, 1, 4950, 33600, 35280, 18144, 30240, 1, 26586, 336630, 717360, 444528, 211680, 332640, 1, 234528, 4870992, 11313120, 10329984, 5927040, 2661120, 3991680
Offset: 1
A257180
Triangle, read by rows, T(n,k) = t(n-k, k) where t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), and f(x) = x + 3.
Original entry on oeis.org
1, 3, 3, 9, 24, 9, 27, 141, 141, 27, 81, 726, 1410, 726, 81, 243, 3471, 11406, 11406, 3471, 243, 729, 15828, 81327, 136872, 81327, 15828, 729, 2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187, 6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561, 19683, 1277619, 19489380, 105311556, 237144642, 237144642, 105311556, 19489380, 1277619, 19683
Offset: 0
Array t(n,k) begins as:
1, 3, 9, 27, 81, 243, ... A000244;
3, 24, 141, 726, 3471, 15828, ...;
9, 141, 1410, 11406, 81327, 533259, ...;
27, 726, 11406, 136872, 1390521, 12609198, ...;
81, 3471, 81327, 1390521, 19467294, 237144642, ...;
243, 15828, 533259, 12609198, 237144642, 3794314272, ...;
729, 69873, 3295152, 105311556, 2607816498, 53824862658, ...;
Triangle T(n,k) begins as:
1;
3, 3;
9, 24, 9;
27, 141, 141, 27;
81, 726, 1410, 726, 81;
243, 3471, 11406, 11406, 3471, 243;
729, 15828, 81327, 136872, 81327, 15828, 729;
2187, 69873, 533259, 1390521, 1390521, 533259, 69873, 2187;
6561, 301362, 3295152, 12609198, 19467294, 12609198, 3295152, 301362, 6561;
Similar sequences listed in
A256890.
-
f[n_]:= n+3;
t[n_, k_]:= t[n,k]= If[n<0 || k<0, 0, If[n==0 && k==0, 1, f[k]*t[n-1,k] +f[n]*t[n,k-1]]];
T[n_, k_]= t[n-k, k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 22 2022 *)
-
f(x) = x + 3;
T(n, k) = t(n-k, k);
t(n, m) = {if (!n && !m, return(1)); if (n < 0 || m < 0, return (0)); f(m)*t(n-1,m) + f(n)*t(n,m-1);}
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(T(n, k), ", ");); print(););} \\ Michel Marcus, Apr 23 2015
-
def f(n): return n+3
@CachedFunction
def t(n,k):
if (n<0 or k<0): return 0
elif (n==0 and k==0): return 1
else: return f(k)*t(n-1, k) + f(n)*t(n, k-1)
def A257627(n,k): return t(n-k,k)
flatten([[A257627(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 22 2022
A049374
A triangle of numbers related to triangle A030527.
Original entry on oeis.org
1, 6, 1, 42, 18, 1, 336, 276, 36, 1, 3024, 4200, 960, 60, 1, 30240, 66024, 23400, 2460, 90, 1, 332640, 1086624, 557424, 87360, 5250, 126, 1, 3991680, 18805248, 13349952, 2916144, 255360, 9912, 168, 1, 51891840, 342486144, 325854144, 95001984
Offset: 1
Triangle begins
1;
6, 1;
42, 18, 1;
336, 276, 36, 1;
3024, 4200, 960, 60, 1;
30240, 66024, 23400, 2460, 90, 1;
332640, 1086624, 557424, 87360, 5250, 126, 1;
E.g., row polynomial E(3,x) = 42*x + 18*x^2 + x^3.
a(4,2) = 276 = 4*(6*7) + 3*(6*6) from the two types of unordered 2-forests of unary increasing trees associated with the two m=2 parts partitions (1,3) and (2^2) of n=4. The first type has 4 increasing labelings, each coming in (1)*(1*6*7)=42 colored versions, e.g., ((1c1),(2c1,3c6,4c3)) with lcp for vertex label l and color p. Here the vertex labeled 3 has depth j=1, hence 6 colors, c1..c6, can be chosen and the vertex labeled 4 with j=2 can come in 7 colors, e.g., c1..c7. Therefore there are 4*((1)*(1*6*7))=168 forests of this (1,3) type. Similarly the (2,2) type yields 3*((1*6)*(1*6))=108 such forests, e.g., ((1c1,3c4)(2c1,4c6)) or ((1c1,3c5)(2c1,4c2)), etc. - _Wolfdieter Lang_, Oct 12 2007
-
Flat(List([1..10],n->Factorial(n)*List([1..n],k->Sum([1..k],j->(-1)^(k-j)*Binomial(k,j)*Binomial(n+5*j-1,5*j-1)/(5^k*Factorial(k)))))); # Muniru A Asiru, Jun 23 2018
-
# The function BellMatrix is defined in A264428.
# Adds (1,0,0,0, ..) as column 0.
BellMatrix(n -> (n+5)!/120, 10); # Peter Luschny, Jan 28 2016
-
a[n_, k_] = n!*Sum[(-1)^(k-j)*Binomial[k, j]*Binomial[n + 5j - 1, 5j - 1]/(5^k*k!), {j, 1, k}] ;
Flatten[Table[a[n, k], {n, 1, 9}, {k, 1, n}] ][[1 ;; 40]]
(* Jean-François Alcover, Jun 01 2011, after Vladimir Kruchinin *)
BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]];
rows = 10;
M = BellMatrix[(#+5)!/120&, rows];
Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
a(n,k)=(n!*sum((-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1),j,1,k))/(5^k*k!); /* Vladimir Kruchinin, Apr 01 2011 */
-
a(n,k)=(n!*sum(j=1,k,(-1)^(k-j)*binomial(k,j)*binomial(n+5*j-1,5*j-1)))/(5^k*k!);
for(n=1,12,for(k=1,n,print1(a(n,k),", "));print()); /* print triangle */ /* Joerg Arndt, Apr 01 2011 */
A092582
Triangle read by rows: T(n,k) is the number of permutations p of [n] having length of first run equal to k.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 12, 8, 3, 1, 60, 40, 15, 4, 1, 360, 240, 90, 24, 5, 1, 2520, 1680, 630, 168, 35, 6, 1, 20160, 13440, 5040, 1344, 280, 48, 7, 1, 181440, 120960, 45360, 12096, 2520, 432, 63, 8, 1, 1814400, 1209600, 453600, 120960, 25200, 4320, 630, 80, 9, 1
Offset: 1
Emeric Deutsch and Warren P. Johnson (wjohnson(AT)bates.edu), Apr 10 2004
T(4,3) = 3 because 1243, 1342 and 2341 are the only permutations of [4] having length of first run equal to 3.
1;
1, 1;
3, 2, 1;
12, 8, 3, 1;
60, 40, 15, 4, 1;
360, 240, 90, 24, 5, 1;
2520, 1680, 630, 168, 35, 6, 1;
...
- M. Bona, Combinatorics of Permutations, Chapman&Hall/CRC, Boca Raton, Florida, 2004.
- Alois P. Heinz, Rows n = 1..141, flattened
- E. Barcucci, A. Del Lungo and R. Pinzani, "Deco" polyominoes, permutations and random generation, Theoretical Computer Science, 159, 1996, 29-42.
- Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
- Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
- Colin Defant and James Propp, Quantifying Noninvertibility in Discrete Dynamical Systems, arXiv:2002.07144 [math.CO], 2020.
- Emeric Deutsch and W. P. Johnson, Create your own permutation statistics, Math. Mag., 77, 130-134, 2004.
-
Flat(List([1..11],n->Concatenation([1],List([1..n-1],k->Factorial(n)*k/Factorial(k+1))))); # Muniru A Asiru, Jun 10 2018
-
A092582:= func< n,k | k eq n select 1 else k*Factorial(n)/Factorial(k+1) >;
[A092582(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Sep 06 2022
-
Drop[Drop[Abs[Map[Select[#, # < 0 &] &, Map[Differences, nn = 10; Range[0, nn]! CoefficientList[Series[(Exp[y x] - 1)/(1 - x), {x, 0, nn}], {x, y}]]]], 1], -1] // Grid (* Geoffrey Critzer, Jun 18 2017 *)
-
{T(n, k) = if( n<1 || k>n, 0, k==n, 1, n! * k /(k+1)!)}; /* Michael Somos, Jun 25 2017 */
-
def A092582(n,k): return 1 if (k==n) else k*factorial(n)/factorial(k+1)
flatten([[A092582(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Sep 06 2022
A049460
Generalized Stirling number triangle of first kind.
Original entry on oeis.org
1, -5, 1, 30, -11, 1, -210, 107, -18, 1, 1680, -1066, 251, -26, 1, -15120, 11274, -3325, 485, -35, 1, 151200, -127860, 44524, -8175, 835, -45, 1, -1663200, 1557660, -617624, 134449, -17360, 1330, -56, 1, 19958400, -20355120, 8969148, -2231012, 342769, -33320, 2002, -68, 1
Offset: 0
{1}; {-5,1}; {30,-11,1}; {-210,107,-18,1}; ... s(2,x)= 30-11*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
Unsigned column sequences are:
A001720-
A001724. Row sums (signed triangle):
A001715(n+3)*(-1)^n. Row sums (unsigned triangle):
A001725(n+5).
-
a049460 n k = a049460_tabl !! n !! k
a049460_row n = a049460_tabl !! n
a049460_tabl = map fst $ iterate (\(row, i) ->
(zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 5)
-- Reinhard Zumkeller, Mar 11 2014
-
a[n_, m_] := Pochhammer[m+1, n-m] SeriesCoefficient[Log[1+x]^m/(1+x)^5, {x, 0, n}];
Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)
Previous
Showing 11-20 of 38 results.
Next
Comments