cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A349598 E.g.f. satisfies: log(A(x)) = exp(x*A(x)^2) - 1.

Original entry on oeis.org

1, 1, 6, 71, 1279, 31142, 958127, 35674921, 1560207964, 78410153193, 4453247964775, 282086867840252, 19718661737739301, 1507855981764016549, 125211854842018500134, 11220898483255456505555, 1079389691811367897870339, 110936313685240067472613726
Offset: 0

Views

Author

Seiichi Manyama, Nov 22 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[(2*n + 1)^(k - 1)*StirlingS2[n, k], {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    a(n) = sum(k=0, n, (2*n+1)^(k-1)*stirling(n, k, 2));

Formula

a(n) = Sum_{k=0..n} (2*n+1)^(k-1) * Stirling2(n,k).
a(n) ~ s * n^(n-1) / (2 * sqrt(1 + r*s^2) * exp(n) * r^n), where r = 0.1513832219344136560178112221696108323993292386502... and s = 1.52429184135463908701026733917578550814344591549... are roots of the system of equations (1 + log(s))*2*r*s^2 = 1, 2*r*s^2*exp(r*s^2) = 1. - Vaclav Kotesovec, Nov 25 2021
Equivalently, a(n) ~ n^(n-1) / (2*sqrt(1 + LambertW(1/2)) * LambertW(1/2)^n * exp(3*n + 1 - (n + 1/2)/LambertW(1/2))). - Vaclav Kotesovec, Nov 26 2021

A365340 a(n) = (4*n)!/(3*n+1)!.

Original entry on oeis.org

1, 1, 8, 132, 3360, 116280, 5100480, 271252800, 16963914240, 1220096908800, 99225500774400, 9003984596006400, 901928094049382400, 98856066097780992000, 11768525894839633920000, 1512185803617951221760000, 208598907329474462760960000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (4*n)!/(3*n+1)!;
    
  • Python
    from sympy import ff
    def A365340(n): return ff(n<<2,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: exp( 1/4 * Sum_{k>=1} binomial(4*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002293(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^3).
a(n) = Sum_{k=0..n} (3*n+1)^(k-1) * |Stirling1(n,k)|. (End)

A365341 a(n) = (5*n)!/(4*n+1)!.

Original entry on oeis.org

1, 1, 10, 210, 6840, 303600, 17100720, 1168675200, 93963542400, 8691104822400, 909171781056000, 106137499051584000, 13679492361575040000, 1929327666754295808000, 295570742023171270656000, 48877281133334949335040000, 8677556868736487617966080000
Offset: 0

Views

Author

Seiichi Manyama, Sep 01 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = (5*n)!/(4*n+1)!;
    
  • Python
    from sympy import ff
    def A365341(n): return ff(5*n,n-1) # Chai Wah Wu, Sep 01 2023

Formula

E.g.f.: exp( 1/5 * Sum_{k>=1} binomial(5*k,k) * x^k/k ). - Seiichi Manyama, Feb 08 2024
a(n) = A000142(n)*A002294(n). - Alois P. Heinz, Feb 08 2024
From Seiichi Manyama, Aug 31 2024: (Start)
E.g.f. satisfies A(x) = 1/(1 - x*A(x)^4).
a(n) = Sum_{k=0..n} (4*n+1)^(k-1) * |Stirling1(n,k)|. (End)

A256061 Number T(n,k) of 2n-length strings of balanced parentheses of exactly k different types; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 2, 4, 0, 5, 30, 30, 0, 14, 196, 504, 336, 0, 42, 1260, 6300, 10080, 5040, 0, 132, 8184, 71280, 205920, 237600, 95040, 0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160, 0, 1430, 363220, 8288280, 58378320, 180180000, 273873600, 201801600, 57657600
Offset: 0

Views

Author

Alois P. Heinz, Mar 13 2015

Keywords

Comments

Also number of binary trees with n inner nodes of exactly k different dimensions. T(2,2) = 4:
: balanced parentheses : ([]) : [()] : ()[] : []() :
:----------------------:-------:-------:-------:-------:
: trees : (1) : [2] : (1) : [2] :
: : / \ : / \ : / \ : / \ :
: : [2] : (1) : [2] : (1) :
: : / \ : / \ : / \ : / \ :

Examples

			A(3,2) = 30: (())[], (()[]), (([])), ()()[], ()([]), ()[()], ()[[]], ()[](), ()[][], ([()]), ([[]]), ([]()), ([])(), ([])[], ([][]), [(())], [()()], [()[]], [()](), [()][], [([])], [[()]], [[]()], [[]](), [](()), []()(), []()[], []([]), [][()], [][]().
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   2,     4;
  0,   5,    30,     30;
  0,  14,   196,    504,     336;
  0,  42,  1260,   6300,   10080,    5040;
  0, 132,  8184,  71280,  205920,  237600,   95040;
  0, 429, 54054, 774774, 3603600, 7207200, 6486480, 2162160;
  ...
		

Crossrefs

Columns k=0-1 give: A000007, A000108 (for n>0).
Main diagonal gives A001761.

Programs

  • Maple
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    A:= proc(n, k) option remember; k^n*ctln(n) end:
    T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    A[0, 0] = 1; A[n_, k_] := A[n, k] = k^n*CatalanNumber[n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 20 2017, translated from Maple *)

Formula

T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * (k-i)^n * A000108(n).
T(n,k) = k! * A253180(n,k).
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A290605(n,k-i). - Alois P. Heinz, Oct 28 2019

A355766 E.g.f. satisfies A(x) = 1/(1 - x*A(x))^(A(x)^2).

Original entry on oeis.org

1, 1, 8, 126, 3028, 98540, 4056948, 202301456, 11855415920, 798682318848, 60823290655680, 5167260183157248, 484519323081722784, 49705696509114472320, 5537956421036240838336, 665926312161296782156800, 85960998514145805006711552
Offset: 0

Views

Author

Seiichi Manyama, Jul 16 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[(n + 2*k + 1)^(k - 1)* Abs[StirlingS1[n, k]], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 21 2022 *)
  • PARI
    a(n) = sum(k=0, n, (n+2*k+1)^(k-1)*abs(stirling(n, k, 1)));

Formula

a(n) = Sum_{k=0..n} (n+2*k+1)^(k-1) * |Stirling1(n,k)|.
a(n) ~ s^(5/2) * n^(n-1) * sqrt((1 - r*s)/(2 - 4*r*s + 2*r^2*s^2 + 3*r*s^3 - 2*r^2*s^4)) / (exp(n) * r^(n - 1/2)), where r = 0.11275303067590951818975824... and s = 1.382171434168172073998532... are real roots of the system of equations (1 - r*s)^(s^2) = 1/s, r*s/(1 - r*s) = 1/s^2 + 2*log(1 - r*s). - Vaclav Kotesovec, Jul 21 2022

A038455 Triangle read by rows: T(n, k) = [x^k] x*Pochhammer(n + x, n)/(n + x).

Original entry on oeis.org

1, 3, 1, 20, 9, 1, 210, 107, 18, 1, 3024, 1650, 335, 30, 1, 55440, 31594, 7155, 805, 45, 1, 1235520, 725592, 176554, 22785, 1645, 63, 1, 32432400, 19471500, 4985316, 705649, 59640, 3010, 84, 1, 980179200, 598482000, 159168428, 24083892, 2267769, 136080, 5082, 108, 1
Offset: 1

Views

Author

Keywords

Comments

Original name: A Jabotinsky-triangle related to A006963.
i) This triangle gives the nonvanishing entries of the Jabotinsky matrix for F(z) = c(z) with c(z) the g.f. for the Catalan numbers A000108. (Notation of F(z) as in Knuth's paper).
ii) E(n, x) = Sum_{m=1..n} a(n, m)*x^m, E(0, x) = 1, are exponential convolution polynomials: E(n, x + y) = Sum_{k=0..n} binomial(n, k)*E(k, x)*E(n-k, y), (cf. Knuth's paper with E(n, x)= n!*F(n, x).)
iii) Explicit formula: see Knuth's paper for f(n, m) formula with f(k) = A006963(k + 1).
Bell polynomial of second kind for log(A000108(x)). - Vladimir Kruchinin, Mar 26 2013
Also the Bell transform of A006963(n+2). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 28 2016

Examples

			Triangle starts:
  [1]       1;
  [2]       3,      1;
  [3]      20,      9,      1;
  [4]     210,    107,     18,     1;
  [5]    3024,   1650,    335,    30,    1;
  [6]   55440,  31594,   7155,   805,   45,  1;
  [7] 1235520, 725592, 176554, 22785, 1645, 63, 1;
		

Crossrefs

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> (2*n+1)!/(n+1)!, 9); # Peter Luschny, Jan 28 2016
    gf := n -> x*pochhammer(n + x, n)/(n + x):
    ser := n -> series(gf(n), x, n + 2):
    seq(seq(coeff(ser(n), x, k), k = 1..n), n = 1..9);  # Peter Luschny, Jun 27 2024
  • Mathematica
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 11; M = BellMatrix[(2#+1)!/(#+1)!&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten
    (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Maxima
    a(n,m):=(n-1)!*(sum((stirling1(k,m)*binomial(2*n,n-k))/(k-1)!,k,m,n)); /* Vladimir Kruchinin, Mar 26 2013 */

Formula

a(n, 1) = A006963(n + 1) = (2*n - 1)!/n!, n >= 1;
a(n, m) = Sum_{j=1..n-m+1} binomial(n - 1, j - 1)*A006963(j + 1)*a(n - j, m - 1), n >= m >= 2.
E.g.f.: ((1 - sqrt(1 - 4*x))/(2*x))^y. - Vladeta Jovovic, May 02 2003
a(n, m) = (n - 1)!*(Sum_{k=m..n} Stirling1(k, m)*binomial(2*n, n-k)/(k-1)!). - Vladimir Kruchinin, Mar 26 2013

Extensions

New name by Peter Luschny, Jun 27 2024

A262033 Number of permutations of [n] beginning with at least floor(n/2) ascents.

Original entry on oeis.org

1, 1, 1, 3, 4, 20, 30, 210, 336, 3024, 5040, 55440, 95040, 1235520, 2162160, 32432400, 57657600, 980179200, 1764322560, 33522128640, 60949324800, 1279935820800, 2346549004800, 53970627110400, 99638080819200, 2490952020480000, 4626053752320000
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2015

Keywords

Examples

			a(4) = 4: 1234, 1243, 1342, 2341.
a(5) = 20: 12345, 12354, 12435, 12453, 12534, 12543, 13425, 13452, 13524, 13542, 14523, 14532, 23415, 23451, 23514, 23541, 24513, 24531, 34512, 34521.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 1,
          2*n*(n*(n-1)*a(n-2)-a(n-1))/((n+2)*(n-1)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := n!/Ceiling[(n + 1)/2]!; Array[a, 30, 0] (* Amiram Eldar, Dec 04 2022 *)

Formula

E.g.f.: (x+1)*(exp(x^2)-1)/x^2.
a(n) = 2*n*(n*(n-1)*a(n-2)-a(n-1))/((n+2)*(n-1)) for n>1, a(0)=a(1)=1.
a(n) = n!/ceiling((n+1)/2)!.
a(2n) = A262034(2n) = A001761(n).
a(2n+1) = A006963(n+2).
Sum_{n>=0} 1/a(n) = 7/4 + 13*exp(1/4)*sqrt(Pi)*erf(1/2)/8, where erf is the error function. - Amiram Eldar, Dec 04 2022

A291699 a(n) = n^n*(2*n)!/(n!*(n + 1)!).

Original entry on oeis.org

1, 1, 8, 135, 3584, 131250, 6158592, 353299947, 23991418880, 1883638417518, 167960000000000, 16772331868538246, 1854655886442627072, 225005916687384753700, 29718395534545380311040, 4245313393689422607421875, 652233889532678001886494720, 107247390031799133661006687830
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Crossrefs

Main diagonal of A290605.

Programs

  • Maple
    seq(n^n*(2*n)!/n!/(n+1)!, n=0..50); # Robert Israel, Aug 30 2017
  • Mathematica
    Join[{1}, Table[n^n (2 n)!/(n! (n + 1)!), {n, 1, 17}]]
    Table[SeriesCoefficient[2/(1 + Sqrt[1 - 4 n x]), {x, 0, n}], {n, 0, 17}]
    Table[SeriesCoefficient[1/(1 + ContinuedFractionK[-n x, 1, {i, 1, n}]), {x, 0, n}], {n, 0, 17}]
  • PARI
    a(n)=binomial(2*n,n)/(n+1)*n^n \\ Charles R Greathouse IV, Oct 23 2023

Formula

a(n) = [x^n] 2/(1 + sqrt(1 - 4*n*x)).
a(n) = [x^n] 1/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - n*x/(1 - ...)))))), a continued fraction.
a(n) = n! * [x^n] (BesselI(0,2*n*x) - BesselI(1,2*n*x))*exp(2*n*x).
a(n) = n^n*binomial(2*n,n)/(n + 1).
a(n) = A000312(n)*A000108(n).
a(n) = A290605(n,n).
a(n) ~ 4^n*n^(n-3/2)/sqrt(Pi).

A093049 n-1 minus exponent of 2 in n, a(0) = 0.

Original entry on oeis.org

0, 0, 0, 2, 1, 4, 4, 6, 4, 8, 8, 10, 9, 12, 12, 14, 11, 16, 16, 18, 17, 20, 20, 22, 20, 24, 24, 26, 25, 28, 28, 30, 26, 32, 32, 34, 33, 36, 36, 38, 36, 40, 40, 42, 41, 44, 44, 46, 43, 48, 48, 50, 49, 52, 52, 54, 52, 56, 56, 58, 57, 60, 60, 62, 57, 64, 64, 66, 65, 68
Offset: 0

Views

Author

Ralf Stephan, Mar 16 2004

Keywords

Examples

			G.f. = 2*x^3 + x^4 + 4*x^5 + 4*x^6 + 6*x^7 + 4*x^8 + 8*x^9 + 8*x^10 + ... - _Michael Somos_, Jan 25 2020
		

Crossrefs

a(n) = n - A007814(n) - 1 = A093048(n) - 1, n>0.
a(n) is the exponent of 2 in A001761(n+1), A002105(n), A002682(n-1), A006963(n), A036770(n-1), A059837(n), A084623(n), |A003707(n)|, |A011859(n)|.

Programs

  • Mathematica
    a[ n_] := If[ n == 0, 0, n - 1 - IntegerExponent[n, 2]]; (* Michael Somos, Jan 25 2020 *)
  • PARI
    a(n)=if(n<1,0,if(n%2==0,a(n/2)+n/2-1,n-1))
    
  • PARI
    {a(n) = if( n, n - 1 - valuation(n, 2))}; /* Michael Somos, Jan 25 2020 */
    
  • Python
    def A093049(n): return n-1-(~n& n-1).bit_length() if n else 0 # Chai Wah Wu, Jul 07 2022

Formula

Recurrence: a(2n) = a(n) + n - 1, a(2n+1) = 2n.
G.f.: sum(k>=0, t^3(t+2)/(1-t^2)^2, t=x^2^k).

A262034 Number of permutations of [n] beginning with at least ceiling(n/2) ascents.

Original entry on oeis.org

1, 0, 1, 1, 4, 5, 30, 42, 336, 504, 5040, 7920, 95040, 154440, 2162160, 3603600, 57657600, 98017920, 1764322560, 3047466240, 60949324800, 106661318400, 2346549004800, 4151586700800, 99638080819200, 177925144320000, 4626053752320000, 8326896754176000
Offset: 0

Views

Author

Alois P. Heinz, Sep 08 2015

Keywords

Examples

			a(4) = 4: 1234, 1243, 1342, 2341.
a(5) = 5: 12345, 12354, 12453, 13452, 23451.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 1$2][n+1],
          2*((n^2-1)*a(n-2)-a(n-1))/(n+3))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    np=Rest[With[{nn=30},CoefficientList[Series[(Exp[x^2](x+1)-x^4/2+x^2+x+1)/ x^3,{x,0,nn}],x] Range[0,nn]!]//Quiet];Join[{1},np] (* Harvey P. Dale, May 18 2019 *)

Formula

E.g.f.: (exp(x^2)*(x+1)-(x^4/2+x^2+x+1))/x^3.
a(n) = 2*((n^2-1)*a(n-2)-a(n-1))/(n+3) for n>3, a(0)=a(2)=a(3)=1, a(1)=0.
a(n) = n!/(n/2+1)! if n even, a(n) = floor(C(n+1,(n+1)/2)/(n+3)*((n-1)/2)!) if n odd.
a(2n) = A262033(2n) = A001761(n).
a(2n+1) = A102693(n+1).
Sum_{n>=2} 1/a(n) = (39*exp(1/4)*sqrt(Pi)*erf(1/2) - 6)/16, where erf is the error function. - Amiram Eldar, Dec 04 2022
Previous Showing 11-20 of 39 results. Next