cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 79 results. Next

A162443 Numerators of the BG1[ -5,n] coefficients of the BG1 matrix.

Original entry on oeis.org

5, 66, 680, 2576, 33408, 14080, 545792, 481280, 29523968, 73465856, 27525120, 856162304, 1153433600, 18798870528, 86603988992, 2080374784, 2385854332928, 3216930504704, 71829033058304, 7593502179328, 281749854617600
Offset: 1

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The BG1 matrix coefficients are defined by BG1[2m-1,1] = 2*beta(2m) and the recurrence relation BG1[2m-1,n] = BG1[2m-1,n-1] - BG1[2m-3,n-1]/(2*n-3)^2 with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. . As usual beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). For the BG2 matrix, the even counterpart of the BG1 matrix, see A008956.
We discovered that the n-th term of the row coefficients can be generated with BG1[1-2*m,n] = RBS1(1-2*m,n)* 4^(n-1)*((n-1)!)^2/ (2*n-2)! for m >= 1. For the BS1(1-2*m,n) polynomials see A160485.
The coefficients in the columns of the BG1 matrix, for m >= 1 and n >= 2, can be generated with GFB(z;n) = ((-1)^(n+1)*CFN2(z;n)*GFB(z;n=1) + BETA(z;n))/((2*n-3)!!)^2 for n >= 2. For the CFN2(z;n) and the Beta polynomials see A160480.
The BG1[ -5,n] sequence can be generated with the first Maple program and the BG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The BG1 matrix is related to the BS1 matrix, see A160480 and the formulas below.

Examples

			The first few formulas for the BG1[1-2*m,n] matrix coefficients are:
BG1[ -1,n] = (1)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -3,n] = (1-2*n)*4^(n-1)*(n-1)!^2/(2*n-2)!
BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!
The first few generating functions GFB(z;n) are:
GFB(z;2) = ((-1)*(z^2-1)*GFB(z;1) + (-1))/1
GFB(z;3) = ((+1)*(z^4-10*z^2+9)*GFB(z;1) + (-11 + z^2))/9
GFB(z;4) = ((-1)*( z^6- 35*z^4+259*z^2-225)*GFB(z;1) + (-299 + 36*z^2 - z^4))/225
		

Crossrefs

A162444 are the denominators of the BG1[ -5, n] matrix coefficients.
The BG1[ -3, n] equal (-1)*A002595(n-1)/A055786(n-1) for n >= 1.
The BG1[ -1, n] equal A046161(n-1)/A001790(n-1) for n >= 1.
The cs(n) equal A046161(n-2)/A001803(n-2) for n >= 2.
The BETA(z, n) polynomials and the BS1 matrix lead to the Beta triangle A160480.
The CFN2(z, n), the t2(n, m) and the BG2 matrix lead to A008956.
Cf. A162443 (BG1 matrix), A162446 (ZG1 matrix) and A162448 (LG1 matrix).

Programs

  • Maple
    a := proc(n): numer((1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!) end proc: seq(a(n), n=1..21);
    # End program 1
    nmax1 := 5; coln := 3; Digits := 20: mmax1 := nmax1: for n from 0 to nmax1 do t2(n, 0) := 1 od: for n from 0 to nmax1 do t2(n, n) := doublefactorial(2*n-1)^2 od: for n from 1 to nmax1 do for m from 1 to n-1 do t2(n, m) := (2*n-1)^2* t2(n-1, m-1) + t2(n-1, m) od: od: for m from 1 to mmax1 do BG1[1-2*m, 1] := euler(2*m-2) od: for m from 1 to mmax1 do BG1[2*m-1, 1] := Re(evalf(2*sum((-1)^k1/(1+2*k1)^(2*m), k1=0..infinity))) od: for m from -mmax1 +coln to mmax1 do BG1[2*m-1, coln] := (-1)^(coln+1)*sum((-1)^k1*t2(coln-1, k1)*BG1[2*m-(2*coln-1)+2*k1, 1], k1=0..coln-1)/doublefactorial(2*coln-3)^2 od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(BG1[ -5,n]) and A162444(n) = denom(BG1[ -5,n]) with BG1[ -5,n] = (1-8*n+12*n^2)*4^(n-1)*(n-1)!^2/(2*n-2)!.
The generating functions GFB(z;n) of the coefficients in the matrix columns are defined by
GFB(z;n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity).
GFB(z;n) = (1-z^2/(2*n-3)^2)*GFB(n-1) - 4^(n-2)*(n-2)!^2/((2*n-4)!*(2*n-3)^2) for n => 2 with GFB(z;n=1) = 1/(z*cos(Pi*z/2))*int(sin(z*t)/sin(t),t=0..Pi/2).
The column sums cs(n) = sum(BG1[2*m-1,n]*z^(2*m-2), m=1..infinity) = 4^(n-1)/((2*n-2)*binomial(2*n-2,n-1)) for n >= 2.
BG1[2*m-1,n] = (n-1)!^2*4^(n-1)*BS1[2*m-1,n]/(2*n-2)!

A161201 Numerators in expansion of (1-x)^(-7/2).

Original entry on oeis.org

1, 7, 63, 231, 3003, 9009, 51051, 138567, 2909907, 7436429, 37182145, 91265265, 882230895, 2103781365, 9917826435, 23141595015, 856239015555, 1964313035685, 8948537162565, 20251952525805, 182267572732245
Offset: 0

Views

Author

Johannes W. Meijer, Jun 08 2009

Keywords

Crossrefs

Cf. A046161 (denominators).
Cf. A161198 (triangle of coefficients of (1-x)^((-1-2*n)/2)).
Numerators of [x^n]( (1-x)^(p/2) ): A161202 (p=5), A161200 (p=3), A002596 (p=1), A001790 (p=-1), A001803 (p=-3), A161199 (p=-5), this sequence (p=-7).

Programs

  • Magma
    A161201:= func< n | Numerator((n+1)*(2*n+1)*(2*n+3)*(2*n+5)*Catalan(n)/(15*4^n)) >;
    [A161201(n): n in [0..30]]; // G. C. Greubel, Sep 24 2024
    
  • Mathematica
    CoefficientList[Series[(1-x)^(-7/2),{x,0,20}],x]//Numerator (* Harvey P. Dale, Jan 14 2020 *)
    Table[(-1)^n*Numerator[Binomial[-7/2, n]], {n, 0, 30}] (* G. C. Greubel, Sep 24 2024 *)
  • SageMath
    def A161201(n): return (-1)^n*numerator(binomial(-7/2,n))
    [A161201(n) for n in range(31)] # G. C. Greubel, Sep 24 2024

Formula

a(n) = numerator(((15+46*n+36*n^2+8*n^3)/15)*binomial(2*n,n)/(4^n)).
a(n) = (-1)^n*numerator( binomial(-7/2, n) ). - G. C. Greubel, Sep 24 2024

A162446 Numerators of the column sums of the ZG1 matrix.

Original entry on oeis.org

-13, 401, -68323, 2067169, -91473331, 250738892357, -12072244190753, 105796895635531, -29605311573467996893, 9784971385947359480303, -5408317625058335310276319, 2111561851139130085557412009
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The ZG1 matrix coefficients are defined by ZG1[2m-1,1] = 2*zeta(2m-1) for m = 2, 3, .. , and the recurrence relation ZG1[2m-1,n] = (ZG1[2m-3,n-1] - (n-1)^2*ZG1[2m-1,n-1])/(n*(n-1)) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= (m-1). As usual zeta(m) is the Riemann zeta function. For the ZG2 matrix, the even counterpart of the ZG1 matrix, see A008955.
These two formulas enable us to determine the values of the ZG1[2*m-1,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, ZG1[1,1] = 2*gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the ZG1 matrix, for m >= 1 and n >= 2, can be generated with GFZ(z;n) = (hg(n)*CFN1(z;n)*GFZ(z;n=1) + ZETA(z;n))/pg(n) with pg(n) = 6*(n-1)!* (n)!*A160476(n) and hg(n) = 6*A160476(n). For the CFN1(z;n) and the ZETA(z;n) polynomials see A160474.
The column sums cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity), for n >= 2, of the ZG1 matrix can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take ZGx[2*m-1,n] = 2, for m >= 1, and ZGx[ -1,n] = ZG1[ -1,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The ZG1[2*m-1,n] matrix coefficients can be generated with the second Maple program.
The ZG1 matrix is related to the ZS1 matrix, see A160474 and the formulas below.

Examples

			The first few generating functions GFZ(z;n) are:
GFZ(z;2) = (6*(1*z^2-1)*GFZ(z;1) + (-1))/12
GFZ(z;3) = (60*(z^4-5*z^2+4)*GFZ(z;1) + (51-10*z^2))/720
GFZ(z;4) = (1260*(z^6-14*z^4+49*z^2-36)*GFZ(z;1) + (-10594+2961*z^2-210*z^4))/181440
		

Crossrefs

See A162447 for the denominators of the column sums.
The pg(n) and hg(n) sequences lead to A160476.
The ZG1[ -1, n] coefficients lead to A000984, A002195 and A002196.
The ZETA(z, n) polynomials and the ZS1 matrix lead to the Zeta triangle A160474.
The CFN1(z, n), the cfn1(n, k) and the ZG2 matrix lead to A008955.
The b(n) sequence equals A001790(n)/ A120777(n-1) for n >= 1.
Cf. A001620 (gamma) and A010790 (n!*(n+1)!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162448 (LG1 matrix)

Programs

  • Maple
    nmax := 13; mmax := nmax: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: Omega(0):=1: for n from 1 to nmax do Omega(n) := (sum((-1)^(k1+n+1)*(bernoulli(2*k1)/(2*k1))*cfn1(n-1, n-k1), k1=1..n))/(2*n-1)! od: for n from 1 to nmax do ZG1[ -1, n] := binomial(2*n, n)*Omega(n) od: for n from 1 to nmax do ZGx[ -1, n] := ZG1[ -1, n] od: for m from 1 to mmax do ZGx[2*m-1, 1] := 2 od: for n from 2 to nmax do for m from 1 to mmax do ZGx[2*m-1, n] := (((ZGx[2*m-3, n-1]-(n-1)^2*ZGx[2*m-1, n-1])/(n*(n-1)))) od; s(n) := 0: for m from 1 to mmax do s(n) := s(n) + ZGx[2*m-1, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1 := 5; ncol := 3; Digits := 20: mmax1 := nmax1: with(combinat): cfn1 := proc(n, k): sum((-1)^j1*stirling1(n+1, n+1-k+j1)*stirling1(n+1, n+1-k-j1), j1=-k..k) end proc: ZG1[1, 1] := evalf(2*gamma): for m from 1 to mmax1 do ZG1[1-2*m, 1] := -bernoulli(2*m)/m od: for m from 2 to mmax1 do ZG1[2*m-1, 1] := evalf(2*Zeta(2*m-1)) od: for n from 1 to nmax1 do for m from -mmax1 to mmax1 do ZG1[2*m-1, n] := sum((-1)^(k1+1)*cfn1(n-1, k1-1)*ZG1[2*m-(2*n-2*k1+1), 1] /((n-1)!*(n)!), k1=1..n) od; od; for m from -mmax1+ncol to mmax1 do ZG1[2*m-1, ncol] := ZG1[2*m-1, ncol] od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162447(n).
with cs(n) = sum(ZG1[2*m-1,n], m = 1 .. infinity) for n >= 2.
GFZ(z;n) = sum( ZG1[2*m-1,n]*z^(2*m-2),m=1..infinity)
GFZ(z;n) = ZG1[ -1,n-1]/(n*(n-1))+(z^2-(n-1)^2)*GFZ(z;n-1)/(n*(n-1)) for n >= 2 with GFZ(z;n=1) = -Psi(1+z) - Psi(1-z).
ZG1[ -1,n] = binomial(2*n,n)*Omega[n] = A000984(n)*A002195(n)/A002196(n).
ZG1[2*m-1,n] = b(n)*ZS1[2*m-1,n] with b(n) = binomial(2*n,n)/2^(2*n-1) for n >= 1.

A162448 Numerators of the column sums of the LG1 matrix.

Original entry on oeis.org

-11, 863, -215641, 41208059, -9038561117, 28141689013943, -2360298440602051, 3420015713873670001, -147239749512798268300237, 176556159649301309969405807, -178564975300377173768513546347
Offset: 2

Views

Author

Johannes W. Meijer, Jul 06 2009

Keywords

Comments

The LG1 matrix coefficients are defined by LG1[2m,1] = 2*lambda(2m+1) for m = 1, 2, .. , and the recurrence relation LG1[2*m,n] = LG1[2*m-2,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG1[2*m,n-1]/(2*n-1) with m = .. , -2, -1, 0, 1, 2, .. and n = 1, 2, 3, .. , under the condition that n <= m. As usual lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. For the LG2 matrix, the even counterpart of the LG1 matrix, see A008956.
These two formulas enable us to determine the values of the LG1[2*m,n] coefficients, with m all integers and n all positive integers, but not for all. If we choose, somewhat but not entirely arbitrarily, LG1[0,1] = gamma, with gamma the Euler-Mascheroni constant, we can determine them all.
The coefficients in the columns of the LG1 matrix, for m >= 1 and n >= 2, can be generated with GFL(z;n) = (hg(n)*CFN2(z;n)*GFL(z;n=1) + LAMBDA(z;n))/pg(n) with pg(n) = 6*(2*n-3)!!*(2*n-1)!!*A160476(n) and hg(n) = 6*A160476(n). For the CFN2(z;n) and the LAMBDA(z;n) see A160487.
The values of the column sums cs(n) = sum(LG1[2*m,n], m = 0.. infinity), for n >= 2, can be determined with the first Maple program. In this program we have made use of the remarkable fact that if we take LGx[2*m,n] = 2, for m >= 0, and LGx[ -2,n] = LG1[ -2,n] and assume that the recurrence relation remains the same we find that the column sums of this new matrix converge to the same values as the original cs(n).
The LG1[2*m,n] matrix coefficients can be generated with the second Maple program.
The LG1 matrix is related to the LS1 matrix, see A160487 and the formulas below.

Examples

			The first few generating functions GFL(z;n) are:
GFL(z;2) = (6*(z^2-1)*GFL(z;1)+(1))/18
GFL(z;3) = (60*(z^4-10*z^2+9)*GFL(z;1)+(-107+10*z^2))/2700
GFL(z;4) = (1260*(z^6-35*z^4+259*z^2-225)*GFL(z;1)+(59845-7497*z^2+210*z^4))/ 1984500
		

Crossrefs

See A162449 for the denominators of the column sums.
The LAMBDA(z, n) polynomials and the LS1 matrix lead to the Lambda triangle A160487.
The CFN2(z, n), the cfn2(n, k) and the LG2 matrix lead to A008956.
The pg(n) and hg(n) sequences lead to A160476.
The LG1[ -2, n] lead to A002197, A002198, A061549 and A001790.
Cf. A001620 (gamma) and A079484 ((2n-1)!!*(2n+1)!!).
Cf. A162440 (EG1 matrix), A162443 (BG1 matrix) and A162446 (ZG1 matrix)

Programs

  • Maple
    nmax := 12; mmax := nmax: for n from 0 to nmax do cfn2(n, 0) := 1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1)+cfn2(n-1, k) od: od: for n from 1 to nmax do Delta(n-1) := sum((1-2^(2*k1-1))*(-1)^(n+1)*(-bernoulli(2*k1)/(2*k1))*(-1)^(k1+n)*cfn2(n-1, n-k1), k1=1..n)/ (2*4^(n-1)*(2*n-1)!) od: for n from 1 to nmax do LG1[ -2, n] := (-1)^(n+1)*4*Delta(n-1)* 4^(2*n-2)/binomial(2*n-2, n-1) od: for n from 1 to nmax do LGx[ -2, n] := LG1[ -2, n] od: for m from 0 to mmax do LGx[2*m, 1] := 2 od: for n from 2 to nmax do for m from 0 to mmax do LGx[2*m, n] := LGx[2*m-2, n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LGx[2*m, n-1]/(2*n-1) od: od: for n from 2 to nmax do s(n) := 0; for m from 0 to mmax-1 do s(n) := s(n) + LGx[2*m, n] od: od: seq(s(n), n=2..nmax);
    # End program 1
    nmax1:=5; ncol:=3; Digits:=20: mmax1:=nmax1: for n from 0 to nmax1 do cfn2(n, 0):=1: cfn2(n, n) := (doublefactorial(2*n-1))^2 od: for n from 1 to nmax1 do for k from 1 to n-1 do cfn2(n, k) := (2*n-1)^2*cfn2(n-1, k-1) + cfn2(n-1, k) od: od: for m from 1 to mmax1 do LG1[ -2*m, 1] := (((2^(2*m-1)-1)*bernoulli(2*m)/m)) od: LG1[0, 1] := evalf(gamma): for m from 2 to mmax1 do LG1[2*m-2, 1] := evalf(2*(1-2^(-2*m+1))*Zeta(2*m-1)) od: for m from -mmax1+ncol-1 to mmax1-1 do LG1[2*m, ncol] := sum((-1)^(k1+1)*cfn2(ncol-1, k1-1)* LG1[2*m-(2*ncol-2*k1), 1], k1=1..ncol)/(doublefactorial(2*ncol-3)*doublefactorial(2*ncol-1)) od;
    # End program 2
    # Maple programs edited by Johannes W. Meijer, Sep 25 2012

Formula

a(n) = numer(cs(n)) and denom(cs(n)) = A162449(n).
with cs(n) = sum(LG1[2*m,n], m = 0 .. infinity) for n >= 2.
GFL(z;n) = sum( LG1[2*m,n]*z^(2*m-2),m=1..infinity)
GFL(z;n) = (LG1[ -2,n-1])/((2*n-3)*(2*n-1))+(z^2/((2*n-3)*(2*n-1))-(2*n-3)/(2*n-1))*GFL(z;n-1) with GFL(z;n=1) = -2*Psi(1-z)+Psi(1-(z/2))-(Pi/2)*tan(Pi*z/2)
LG1[ -2,n] = (-1)^(n+1)*4*(A061549(n-1)/A001790(n-1))*(A002197(n-1)/A002198(n-1))
LG1[2*m,n] = (4^(n-1)/((2*n-1)*binomial(2*n-2,n-1)))*LS1[2*m,n]

A001801 Coefficients of Legendre polynomials.

Original entry on oeis.org

3, 15, 105, 315, 6930, 18018, 90090, 218790, 2078505, 4849845, 22309287, 50702925, 1825305300, 4071834900, 18032411700, 39671305740, 347123925225, 755505013725, 3273855059475, 7064634602025, 121511715154830, 260382246760350, 1112542327066950, 2370198870707850, 20146690401016725
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of A004733.
Diagonal 3 of triangle A100258.

Programs

  • Magma
    A001801:= func< n | 3*Binomial(n+3,3)*Catalan(n+2)*2^(Valuation(Factorial(n+4),2)-n-4) >;
    [A001801(n): n in [0..30]]; // G. C. Greubel, Apr 26 2025
    
  • Mathematica
    A001801[n_]:= 3*2^(2*n+1)*Binomial[n+3/2, n]/2^DigitCount[n+4,2,1];
    Table[A001801[n], {n,0,40}] (* G. C. Greubel, Apr 26 2025 *)
  • PARI
    a(n)=if(n<0,0,polcoeff(pollegendre(n+4),n)*2^valuation((n\2*2+4)!,2))
    
  • SageMath
    def A001801(n): return 3*2^(n-3)*binomial(n+3/2,n)*2^valuation(factorial(n+4), 2)
    print([A001801(n) for n in range(31)]) # G. C. Greubel, Apr 26 2025

Formula

a(n) = 3*2^(n-3)*binomial(n + 3/2, n)*2^A011371(n+4). - G. C. Greubel, Apr 26 2025

Extensions

More terms from Michael Somos, Oct 25 2002

A163590 Odd part of the swinging factorial A056040.

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 5, 35, 35, 315, 63, 693, 231, 3003, 429, 6435, 6435, 109395, 12155, 230945, 46189, 969969, 88179, 2028117, 676039, 16900975, 1300075, 35102025, 5014575, 145422675, 9694845, 300540195, 300540195, 9917826435, 583401555, 20419054425, 2268783825
Offset: 0

Views

Author

Peter Luschny, Aug 01 2009

Keywords

Comments

Let n$ denote the swinging factorial. a(n) = n$ / 2^sigma(n) where sigma(n) is the exponent of 2 in the prime-factorization of n$. sigma(n) can be computed as the number of '1's in the base 2 representation of floor(n/2).
If n is even then a(n) is the numerator of the reduced ratio (n-1)!!/n!! = A001147(n-1)/A000165(n), and if n is odd then a(n) is the numerator of the reduced ratio n!!/(n-1)!! = A001147(n)/A000165(n-1). The denominators for each ratio should be compared to A060818. Here all ratios are reduced. - Anthony Hernandez, Feb 05 2020 [See the Mathematica program for a more compact form of the formula. Peter Luschny, Mar 01 2020 ]

Examples

			11$ = 2772 = 2^2*3^2*7*11. Therefore a(11) = 3^2*7*11 = 2772/4 = 693.
From _Anthony Hernandez_, Feb 04 2019: (Start)
a(7) = numerator((1*3*5*7)/(2*4*6)) = 35;
a(8) = numerator((1*3*5*7)/(2*4*6*8)) = 35;
a(9) = numerator((1*3*5*7*9)/(2*4*6*8)) = 315;
a(10) = numerator((1*3*5*7*9)/(2*4*6*8*10)) = 63. (End)
		

Crossrefs

Programs

  • Maple
    swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
    sigma := n -> 2^(add(i,i= convert(iquo(n,2),base,2))):
    a := n -> swing(n)/sigma(n);
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/ f!]; a[n_] := With[{s = sf[n]}, s/2^IntegerExponent[s, 2]]; Table[a[n], {n, 0, 31}] (* Jean-François Alcover, Jul 26 2013 *)
    r[n_] := (n - Mod[n - 1, 2])!! /(n - 1 + Mod[n - 1, 2])!! ;
    Table[r[n], {n, 0, 36}] // Numerator (* Peter Luschny, Mar 01 2020 *)
  • PARI
    A163590(n) = {
        my(a = vector(n+1)); a[1] = 1;
        for(n = 1, n,
            a[n+1] = a[n]*n^((-1)^(n+1))*2^valuation(n, 2));
    a } \\ Peter Luschny, Sep 29 2019
  • Sage
    # uses[A000120]
    @CachedFunction
    def swing(n):
        if n == 0: return 1
        return swing(n-1)*n if is_odd(n) else 4*swing(n-1)/n
    A163590 = lambda n: swing(n)/2^A000120(n//2)
    [A163590(n) for n in (0..31)]  # Peter Luschny, Nov 19 2012
    # Alternatively:
    
  • Sage
    @cached_function
    def A163590(n):
        if n == 0: return 1
        return A163590(n - 1) * n^((-1)^(n + 1)) * 2^valuation(n, 2)
    print([A163590(n) for n in (0..31)]) # Peter Luschny, Sep 29 2019
    

Formula

a(2*n) = A001790(n).
a(2*n+1) = A001803(n).
a(n) = a(n-1)*n^((-1)^(n+1))*2^valuation(n, 2) for n > 0. - Peter Luschny, Sep 29 2019

A001800 Coefficients of Legendre polynomials.

Original entry on oeis.org

1, 3, 30, 70, 315, 693, 12012, 25740, 109395, 230945, 1939938, 4056234, 16900975, 35102025, 1163381400, 2404321560, 9917826435, 20419054425, 167890003050, 344616322050, 1412926920405, 2893136075115, 47342226683700, 96742811049300, 395033145117975
Offset: 0

Views

Author

Keywords

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
  • G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Diagonal 2 of triangle A100258.

Programs

  • Magma
    A001800:= func< n | (n+1)*(n+2)*Catalan(n+1)/2^(&+Intseq(n+2, 2)) >;
    [A001800(n): n in [0..30]]; // G. C. Greubel, Apr 25 2025
    
  • Maple
    wt:= proc(n) local m, r; m:=n; r:=0;
           while m>0 do r:= r+irem(m, 2, 'm') od; r
         end:
    a:= n-> (n+1) *binomial(2*n+2, n+1)/2^wt(n+2):
    seq(a(n), n=0..30);  # Alois P. Heinz, May 29 2013
  • Mathematica
    a[n_] := (n+1)*Binomial[2*n+2, n+1]/2^DigitCount[n+2, 2, 1]; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 13 2014 *)
  • PARI
    a(n)=if(n<0,0,-polcoeff(pollegendre(n+2),n)*2^valuation((n\2*2)!,2))
    
  • SageMath
    def A001800(n): return (n+1)*binomial(2*n+2,n+1)//2^sum((n+2).digits(2))
    print([A001800(n) for n in range(31)]) # G. C. Greubel, Apr 25 2025

Formula

a(n) = (n+1) * C(2n+2, n+1) / 2^A000120(n+2).

Extensions

More terms from Michael Somos, Oct 25 2002

A061548 Numerator of probability that there is no error when average of n numbers is computed, assuming errors of +1, -1 are possible and they each occur with p = 1/4.

Original entry on oeis.org

1, 3, 35, 231, 6435, 46189, 676039, 5014575, 300540195, 2268783825, 34461632205, 263012370465, 8061900920775, 61989816618513, 956086325095055, 7391536347803839, 916312070471295267, 7113260368810144185, 110628135069209194801, 861577581086657669325, 26876802183334044115405
Offset: 0

Views

Author

Leah Schmelzer (leah2002(AT)mit.edu), May 16 2001

Keywords

Examples

			For n=1, the binomial(2*n-1/2, -1/2) yields the term 3/8. The numerator of this term is 3, which is the second term of the sequence.
		

Crossrefs

Bisection of A001790.

Programs

  • Magma
    A061548:= func< n | Numerator(Binomial(4*n,2*n)/4^n) >;
    [A061548(n): n in [0..25]]; // G. C. Greubel, Oct 19 2024
  • Maple
    seq(numer(binomial(2*n-1/2, -1/2)), n=0..20);
  • Mathematica
    Table[Numerator[(4*n) !/(2^(4*n)*(2*n) !^2) ], {n, 0, 20}] (* Indranil Ghosh, Mar 11 2017 *)
    Table[Numerator[SeriesCoefficient[Series[(Sqrt[1 + Sqrt[1 - x]]/Sqrt[2 - 2* x]), {x, 0, n}], n]], {n, 0, 20}] (* Karol A. Penson, Apr 16 2018 *)
  • PARI
    for(n=0, 20, print1(numerator((4*n)!/(2^(4*n)*(2*n)!^2)),", ")) \\ Indranil Ghosh, Mar 11 2017
    
  • Python
    import math
    f = math.factorial
    def A061548(n): return f(4*n) // math.gcd(f(4*n), (2**(4*n)*f(2*n)**2)) # Indranil Ghosh, Mar 11 2017
    
  • Sage
    def A061548(n): return binomial(4*n,2*n)/2^sum(n.digits(2))
    [A061548(n) for n in (0..20)]  # Peter Luschny, Mar 23 2014
    

Formula

a(n) = numerator(binomial(2*n-1/2, -1/2)).
From Johannes W. Meijer, Jul 06 2009: (Start)
a(n) = numerator((4*n)!/(2^(4*n)*(2*n)!^2)).
a(n) = 2*A001448(n)/ A117973(n). (End)
a(n) = A001448(n)/A001316(n). - Peter Luschny, Mar 23 2014
a(n) is the numerator of the coefficient of power series in x around x=0 of sqrt(1 + sqrt(1 - x))/(sqrt(2)*sqrt(1 - x)). - Karol A. Penson, Apr 16 2018

Extensions

More terms from Asher Auel, May 20 2001

A327495 a(n) = numerator( Sum_{j=0..n} (j!/(2^j*floor(j/2)!)^2)^2 ).

Original entry on oeis.org

1, 17, 69, 1113, 17817, 285297, 1141213, 18260633, 1168681737, 18699007017, 74796032037, 1196736992841, 19147791938817, 306364680039081, 1225458720340365, 19607339566855065, 5019478929156305865, 80311662878468159865, 321246651514020383485, 5139946424277661728785
Offset: 0

Views

Author

Peter Luschny, Sep 27 2019

Keywords

Comments

This sequence is a variant of the Landau constants when the normalized central binomial is replaced by the normalized swinging factorial.
(1) A277233(n)/4^A005187(n) are the Landau constants. These constants are defined as G(n) = Sum_{j=0..n} g(j)^2 with the normalized central binomial
g(n) = (2*n)! / (2^n*n!)^2 = A001790(n)/A046161(n).
(2) A327495(n)/4^A327492(n) are the rationals considered here. These numbers are defined as H(n) = Sum_{j=0..n} h(j)^2 with the normalized swinging factorial
h(n) = n! / (2^n*floor(n/2)!)^2 = A163590(n)/A327493(n).
(3) In particular, this means that we have the pure integer representations
A277233(n) = Sum_{k=0..n}(A001790(k)*(2^(A005187(n) - A005187(k))))^2;
A327495(n) = Sum_{k=0..n}(A163590(k)*(2^(A327492(n) - A327492(k))))^2.
(4) A163590 is the odd part of the swinging factorial and A001790 is the odd part of the swinging factorial at even indices (see a comment from Aug 01 2009 in A001790). Similarly, A327493(2n)=A046161(2n) and A327493(2n+1) = 2*A046161(2n+1).
(5) A005187 are the partial sums of A001511, the 2-adic valuation of 2n, and A327492 are the partial sums of A327491.

Examples

			r(n) = 1, 17/16, 69/64, 1113/1024, 17817/16384, 285297/262144, 1141213/1048576, 18260633/16777216, ...
		

Crossrefs

Programs

  • Maple
    A327495 := n -> numer(add(j!^2/(2^j*iquo(j,2)!)^4, j=0..n)):
    seq(A327495(n), n=0..19);
  • PARI
    a(n)={ numerator(sum(j=0, n, (j!/(2^j*(j\2)!)^2)^2 )) } \\ Andrew Howroyd, Sep 28 2019

Formula

Denominator(r(n)) = 4^A327492(n) = A327493(n)^2 = A327496(n).
a(n) = Sum_{k=0..n} (A163590(k)*(2^(A327492(n) - A327492(k))))^2.

A334907 Comtet's expansion of the e.g.f. (sqrt(1 + sqrt(8*s)) - sqrt(1 - sqrt(8*s)))/ sqrt(8*s * (1 - 8*s)).

Original entry on oeis.org

1, 5, 63, 1287, 36465, 1322685, 58503375, 3053876175, 183771489825, 12525477859125, 953725671273375, 80237355387564375, 7391465178302430225, 739967791738943292525, 79993069900054731795375, 9286937373235386442953375, 1152424501315118408602850625
Offset: 0

Views

Author

Petros Hadjicostas, May 15 2020

Keywords

Comments

A special case of an integral in Comtet (1967, pp. 85-86) yields
Integral_{t=-oo..oo} dx/(x^2 + t^2)^(2*n) = Pi * a(n-1)/((n-1)! * 2^(3*n - 2) * t^(4*n-1)) for n >= 1 and t > 0. This integral also follows from a theorem in Moll (2002, p. 312, set a=1), but it requires the summation formula for a(n) shown below.

Crossrefs

Formula

a(n) = binomial(4*n+2, 2*n+1)*n!/2^(n+1).
a(n) = n!*A063079(n+1)/A060818(n) = n!*A001790(2*n+1)/A060818(n) (see the link for a proof).
a(n) = n!*Sum_{j=0..n} 2^(n-2*j)*binomial(2*n+1,2*j)*binomial(2*j,j).
a(n) = 2^n*n!*Sum_{k=0..n} A223549(n,k)/A223550(n,k).
E.g.f.: 2/(sqrt(1 - 8*s) * (sqrt(1 + sqrt(8*s)) + sqrt(1 - sqrt(8*s)))).
E.g.f.: sqrt(2/(1 + sqrt(1 - 8*s))/(1 - 8*s)).
D-finite with recurrence (2*n+1)*a(n) -(4*n-1)*(4*n+1)*a(n-1)=0. - R. J. Mathar, May 25 2020
Previous Showing 31-40 of 79 results. Next